Project description:Erythromycin is the drug of choice to treat campylobacteriosis, but resistance to this antibiotic is rising. The adaptive mechanisms employed by Campylobacter jejuni to erythromycin treatment remain unknown. The aim of this study is to determine the molecular basis underlying CampylobacterM-bM-^@M-^Ys immediate response to Ery treatment. The design utilized an available two color microarray slide for the entire transcriptome of Campylobacter jejuni wild type strain NCTC 11168. One hybridizations were performed: sham-treated NCTC 11168 v.s. lethal dose erythromycin treated NCTC 11168. Samples were independently grown and harvested. There were three biological replicates of each sample.
Project description:Erythromycin is the drug of choice to treat campylobacteriosis, but resistance to this antibiotic is rising. The adaptive mechanisms employed by Campylobacter jejuni to erythromycin treatment remain unknown. The aim of this study is to determine the molecular basis underlying CampylobacterM-bM-^@M-^Ys immediate response to Ery treatment. The design utilized an available two color microarray slide for the entire transcriptome of Campylobacter jejuni wild type strain NCTC 11168. One hybridizations were performed: sham-treated NCTC 11168 v.s. sub-lethal dose erythromycin treated NCTC 11168. Samples were independently grown and harvested. There were three biological replicates of each sample.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of wildtype Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.
Project description:We report the use of RNA-seq analysis for the determination of RPKM transcript levels in wildtype and fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for comparison of gene expression levels.
Project description:We report the use of RNA-seq analysis for the determination of RPKM transcript levels in wildtype and fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for comparison of gene expression levels. Campylobacter jejuni NCTC 11168 wildtype and fur perR mutant were grown to late log phase, RNA was purified and used for RNA-sequencing by Illumina HiSeq sequencing
Project description:Campylobacter, a major foodborne pathogen, is increasingly resistant to macrolide antibibotics. Previous findings suggeted that development of macrolide resistance in campylobacter requires a multi-step process, but the molecular mechanisms involved in the process are not known. In our study, multiple series of macrolide-resistant C. jejuni mutants were selected in vitro by stepwise exposure of C. jejuni NCTC11168 to increasing concentrations of erythromycin and tylosin. A set of the selected resistance were subjected to microarray and the the global transcriptional profile was analyzed. In this sery, DNA microarray was used to compare the gene expression profiles of macrolide resistant strains (68E1, 68E8 and 68E64) with its parent wild-type strain NCTC11168. The assay identified a small number of genes that showed significant changes (q-value<0.1) in expression in the low-level macrolide resistant strain 68E1, while a large number of gene showing significant changes in intermedia-level resistant stran 68E8 and high-level resistant strain 68 E64. The up-regulated genes in the resistant strains are involved in miscellaneous periplasmic proteins, efflux protienand putative aminotransferase, while the majority of the down-regulated genes are involved in electron transport,lipoprotein, heat shock protein and unknown function proteins. These findings suggest that there is not much change in low-level macrolide resistant C. jejuni strain. The over-expression of efflux pump and periplasmic protein was involved in the development of resistance to macrolide in C. jejuni. Keywords: macrolide resistant C. jejuni selected from NCTC 11168 step-wise selection.