Project description:CNV plays an important role in the chicken genomic studies,it is imperative need to investigate the extent and pattern of CNVs using array comparative genomic hybridization (aCGH) in chinese chicken breeds for future studies associating phenotype to genome architecture. we describe systematic and genome-wide analysis of CNVs loci in five Chinese indigenous chicken breeds were evaluated by aCGH.
Project description:Copy number variation profiles comparing control female Dehong chiken blood DNA with 11 different chicken breeds(Silkie, Tibetan Chicken, Gallus gallus spadiceus, Bearded Chicken, Jinhu Chicken, Anak Chicken, Beijing Fatty Chicken, Langshan Chicken, Qingyuan partridge Chicken, Shek-Ki Chicken, Wenchang Chicken) blood DNA. Each test breeds had one male and one female sample, totally 22 test DNA samples.Goal is to get the golbal copy number variation profile between chicken breeds.
Project description:CNV plays an important role in the chicken genomic studies,it is imperative need to investigate the extent and pattern of CNVs using array comparative genomic hybridization (aCGH) in chinese chicken breeds for future studies associating phenotype to genome architecture. we describe systematic and genome-wide analysis of CNVs loci in five Chinese indigenous chicken breeds were evaluated by aCGH. 5 Chinese native chicken were detected using ANKA broiler as reference.
Project description:Copy number variation profiles comparing control female Dehong chicken blood DNA with 3 different chicken breeds (white Leghorn, Cobb broiler, and Dou chicken) blood DNA. Each test breed had one male and one female sample, for a total of 6 test DNA samples. The goal is to determine the global copy number variation profiles between chicken breeds.
Project description:Copy number variation profiles comparing control female Dehong chicken blood DNA with 3 different chicken breeds (white Leghorn, Cobb broiler, and Dou chicken) blood DNA. Each test breed had one male and one female sample, for a total of 6 test DNA samples. The goal is to determine the global copy number variation profiles between chicken breeds. Female Dehong chicken DNA as reference DNA vs. 6 test chicken DNA samples.
Project description:The conservation and development of chicken has considerably affected human activities, but the admixture history of chicken breeds has so far been poorly demonstrated especially for Chinese indigenous breeds. Using genotypes from 580961 single nucleotide polymorphism markers scored in 1201 animals, we evaluate the genetic diversity (heterozygosity and proportion of polymorphic markers), Linkage disequilibrium (LD) decay, population structure (principal component analysis and neighbor-joining tree), genetic differentiation (FST and genetic distance) and migration events (Treemix and f-statistics) of eight domesticated chicken breeds. All population analytical methods reveal patterns of hybridization which occurred after divergence in Tibetan chicken. We argue that chicken migration and admixture followed by trade have been important forces in shaping modern Chinese chicken genomic variation. Moreover, isolation by distance may play critical role in the shaping genomic variation within Eurasia continent chicken breeds.
Project description:A CNV map in pigs could facilitate the identification of chromosomal regions that segregate for important economic and disease phenotypes. The goal of this study was to identify CNV regions (CNVRs) in pigs based on a custom array comparative genome hybridization (aCGH). We carried out a custom-made array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the pig genome analysing animals of diverse pig breeds (White Duroc, Yangxin, Erhualian, Tongcheng, Large White, Pietrain, Landrace and Chinese new pig line DIV ) using a tiling oligonucleotide array with ~720,000 probes designed on the pig genome (Sus scrofa genome version 9.0).
Project description:Background: Detecting genetic variation is a critical step in elucidating the molecular mechanisms underlying phenotypic diversity. Until recently, such detection has mostly focused on single nucleotide polymorphisms (SNPs) because of the ease in screening complete genomes. Another type of variant, copy number variation (CNV), is emerging as a significant contributor to phenotypic variation in many species. Here we describe a genome-wide CNV study using array comparative genomic hybridization (aCGH) in a wide variety of chicken breeds. Results: We identified 3,154 CNVs, grouped into 1,556 CNV regions (CNVRs). Thirty percent of the CNVs were detected in at least 2 individuals. The average size of the CNVs detected was 46.3 kb with the largest CNV, located on GGAZ, being 4.3 Mb. Approximately 75% of the CNVs are copy number losses relatively to the Red Jungle Fowl reference genome. The genome coverage of CNVRs in this study is 60 Mb, which represents almost 5.4% of the chicken genome. In particular large gene families such as the keratin gene family and the MHC show extensive CNV. Conclusions: A relative large group of the CNVs are line-specific, several of which were previously shown to be related to the causative mutation for a number of phenotypic variants. The chance that inter-specific CNVs fall into CNVRs detected in chicken is related to the evolutionary distance between the species. Our results provide a valuable resource for the study of genetic and phenotypic variation in this phenotypically diverse species.