Project description:whole genome analysis of RNA pol II and histone H3 in WT and Spt6-depleted cells using a tetracycline regulated ts degron mutant, spt6-td. ChIP-seq of histone H3and pol II in budding yeast (W303 background)
Project description:whole genome analysis of RNA pol II and histone H3 in WT and Spt6-depleted cells using a tetracycline regulated ts degron mutant, spt6-td.
Project description:whole genome analysis of RNA pol II and histone H3 in WT and Spt6-depleted cells using a tetracycline regulated ts degron mutant, spt6-td.
Project description:whole genome analysis of RNA pol II and histone H3 in WT and Spt6-depleted cells using a tetracycline regulated ts degron mutant, spt6-td. ChiP-ChIP using ligation-mediated PCR amplified material hybridized to Nimblegen 385K arrays 50mers median probe spacing 32 bp cat. No. C4214-00-01
Project description:Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C-terminus that recognizes Pol II CTD peptides phosphorylated on Ser2, Ser5 or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' end of genes, where phosphorylated Ser2 reaches its maximum level. Additionally, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' end of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo. We examined the genome-wide distribution (using ChIP-chip) of Spt6. Spt6 occupancy was also assayed in mutants for CTD Serine 2 and Serine 5 kinases and in mutants for histone deacetylases. ChIPs were performed with a Myc-tagged version of Spt6. Most ChIPs (in Cy5) were hybridyzed against a control ChIP sample from an isogenic non-tagged strain (in Cy3). In the ChIP experiments with the spt6-202del mutant, non immunoprecipitated DNA (input) was used as the control. In addition to Spt6 ChIPs, the project includes RNAPII (Rpb3) ChIP-chip datasets, where an anti-Rpb3 antibody was used to ChIP RNAPII and non immunoprecipitated DNA (input) was used as the control. All ChIP-chip experiments were done in duplicates. Each microarray was normalized using the Lima Loess and replicates were combined using a weighted average method as previously described (Pokholok et al., 2005).
Project description:The FACT complex and Spt6 are conserved histone chaperones that are recruited to the open reading frames of transcribed genes. In this study, we provide evidence that FACT interaction with acetylated H3 tail is important for its localization to the coding sequences. Pol II CTD kinase Kin28 additionally stimulates FACT recruitment to a subset of genes. Pol II occupancies in the 5’ ends of transcribed genes are greatly reduced on depleting FACT, whereas reduced occupancies at the 3’ ends were observed upon Spt6 depletion indicating that these factors modulate Pol II progression through distinct regions of transcribed coding sequences. While FACT is largely responsible for reassembling histones, we uncover a role for Spt6 in promoting histone eviction in addition to widely-accepted role for Spt6 in histone reassembly. Consistent with their localization in the coding regions, simultaneously impairing FACT and Spt6 function severely dampens histone eviction and impairs transcription genome-wide. ChIP-chip experiments to measure Spt16 occupancies in WT and kin28as mutant, as well Rpb3 and histone H3 occupancies in undepleted or depleted cells for Spt16 and Spt6, and also in the strain lacking Spt6 tandem SH2 domain
Project description:Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C-terminus that recognizes Pol II CTD peptides phosphorylated on Ser2, Ser5 or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' end of genes, where phosphorylated Ser2 reaches its maximum level. Additionally, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' end of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo.
Project description:The Paf1 complex (Paf1C) is a conserved transcription elongation factor that regulates transcription elongation efficiency, facilitates co-transcriptional histone modifications, and impacts molecular processes linked to RNA synthesis, such as polyA site selection. Coupling of the activities of Paf1C to transcription elongation requires its association with RNA polymerase II (Pol II). Mutational studies in yeast identified Paf1C subunits Cdc73 and Rtf1 as important mediators of Paf1C association with Pol II on active genes. While the interaction between Rtf1 and the general elongation factor Spt5 is relatively well-understood, the interactions involving Cdc73 have not been fully elucidated. Using a site-specific protein cross-linking strategy in yeast cells, we identified direct interactions between Cdc73 and two components of the Pol II elongation complex, the elongation factor Spt6 and the largest subunit of Pol II. Both of these interactions require the tandem SH2 domain of Spt6. We also show that Cdc73 and Spt6 can interact in vitro and that rapid depletion of Spt6 dissociates Paf1 from chromatin, altering patterns of Paf1C-dependent histone modifications genome-wide. These results reveal interactions between Cdc73 and the Pol II elongation complex and identify Spt6 as a key factor contributing to the occupancy of Paf1C at active genes in Saccharomyces cerevisiae.
Project description:In vitro studies identified various factors including P-TEFb, SEC, SPT6, PAF1, DSIF, and NELF functioning at different stages of transcription elongation driven by RNA polymerase II (RNA Pol II). What remains unclear is how these factors cooperatively regulate pause/release and productive elongation in the context of living cells. Using an acute 5 protein-depletion approach, prominent release and a subsequent increase in mature transcripts, whereas long genes fail to yield mature transcripts due to a loss of processivity. Mechanistically, loss of SPT6 results in loss of PAF1 complex (PAF1C) from RNA Pol II, leading to NELF-bound RNA Pol II release into the gene bodies. Furthermore, SPT6 and/or PAF1 depletion impairs heat shock-induced pausing, pointing to a role for SPT6 in regulating RNA Pol II pause/release through the recruitment of PAF1C during the early elongation.
Project description:ATP-dependent chromatin remodelers regulate chromatin structure during multiple stages of transcription. We report that RSC, an essential chromatin remodeler, is recruited to the open reading frames (ORFs) of actively transcribed genes genome-wide, suggesting a role for RSC in regulating transcription elongation. Consistent with such a role, Pol II occupancy in the ORFs of weakly transcribed genes is drastically reduced upon depletion of the RSC catalytic subunit Sth1. RSC inactivation also reduced histone H3 occupancy across transcribed regions. Remarkably, the strongest effects on Pol II and H3 occupancy were confined to the genes displaying the greatest RSC ORF enrichment. Additionally, RSC recruitment to the ORF requires the activities of the SAGA and NuA4 HAT complexes and is aided by the activities of the Pol II CTD Ser2 kinases Bur1 and Ctk1. Overall, our findings strongly implicate ORF-associated RSC in governing Pol II function and in maintaining chromatin structure over transcribed regions. ChIP-chip experiments to measure Sth1, Rpb3 and H3 occupancy in WT and various mutants (histone acetyltransferase and Pol II CTD kinase mutants). The histone H3 and Rpb3 occupancy were also measured in cells upon Sth1 depletion. The WT and mutant strains were grown in Synthetic complete or YPD media to an O.D. 600 of 0.6-0.8. For inducing Gcn4, the cells grown in SC were treated with Sulfometuron methyl for 20-25 minutes and process for chromatin immunoprecipitation using antibodies again Myc, Rpb3 or histone H3.