Project description:Transcriptional profile of sugarcane plants variety SP80-3280 inoculated with the pathogen Leifsonia xyli subsp. xyli (Lxx) compared with mocked inoculated ones 30 and 60 days after inoculation (DAI). Goal was to determine the effects of the increase in Lxx title on global sugarcane gene expression.
Project description:We announce the complete genome sequence of Leifsonia xyli subsp. cynodontis, a vascular pathogen of Bermuda grass. The species also comprises Leifsonia xyli subsp. xyli, a sugarcane pathogen. Since these two subspecies have genome sequences available, a comparative analysis will contribute to our understanding of the differences in their biology and host specificity.
Project description:We performed a comprehensive study of the distribution and function of an insertion sequence (IS) element, IS1237, in the genome of Leifsonia xyli subsp. cynodontis, a useful genetic carrier for expressing beneficial foreign genes in plants. Two shorter IS1237 isoforms, IS1237d1 and IS1237d2 resulting from precise deletion between two nonperfect repeats, were found in the bacterial genome at a level that was one-fifth the level of wild-type IS1237. Both the genome and native plasmid pCXC100 harbor a truncated toxin-antitoxin cassette that is precisely fused with a 5'-truncated IS1237 sequence at one nonperfect repeat, indicating that it is a hot site for DNA rearrangement. Nevertheless, no transposition activity was detected when the putative transposase of IS1237 was overexpressed in Escherichia coli. Using thermal asymmetric interlaced PCR, we identified 13 upstream and 10 downstream unique flanking sequences, and two pairs of these sequences were from the same loci, suggesting that IS1237 has up to 65 unique loci in the L. xyli subsp. cynodontis chromosome. The presence of TAA or TTA direct repeat sequences at most insertion sites indicated that IS1237 inserts into the loci by active transposition. IS1237 showed a high propensity for insertion into other IS elements, such as ISLxc1 and ISLxc2, which could offer IS1237 a nonautonomous transposition pathway through the host IS elements. Interestingly, we showed that IS1237 has a strong promoter at the 3' end and a weak promoter at the 5' end, and both promoters promote the transcription of adjacent genes in different gram-positive bacteria. The high-copy-number nature of IS1237 and its promoter activity may contribute to bacterial fitness.
Project description:Sugarcane ratoon stunting disease (RSD) caused by Leifsonia xyli subsp. xyli (Lxx) is a common destructive disease that occurs around the world. Lxx is an obligate pathogen of sugarcane, and previous studies have reported some physiological responses of RSD-affected sugarcane. However, the molecular understanding of sugarcane response to Lxx infection remains unclear. In the present study, transcriptomes of healthy and Lxx-infected sugarcane stalks and leaves were studied to gain more insights into the gene activity in sugarcane in response to Lxx infection. RNA-Seq analysis of healthy and diseased plants transcriptomes identified 107,750 unigenes. Analysis of these unigenes showed a large number of differentially expressed genes (DEGs) occurring mostly in leaves of infected plants. Sugarcane responds to Lxx infection mainly via alteration of metabolic pathways such as photosynthesis, phytohormone biosynthesis, phytohormone action-mediated regulation, and plant-pathogen interactions. It was also found that cell wall defense pathways and protein phosphorylation/dephosphorylation pathways may play important roles in Lxx pathogeneis. In Lxx-infected plants, significant inhibition in photosynthetic processes through large number of differentially expressed genes involved in energy capture, energy metabolism and chloroplast structure. Also, Lxx infection caused down-regulation of gibberellin response through an increased activity of DELLA and down-regulation of GID1 proteins. This alteration in gibberellic acid response combined with the inhibition of photosynthetic processes may account for the majority of growth retardation occurring in RSD-affected plants. A number of genes associated with plant-pathogen interactions were also differentially expressed in Lxx-infected plants. These include those involved in secondary metabolite biosynthesis, protein phosphorylation/dephosphorylation, cell wall biosynthesis, and phagosomes, implicating an active defense response to Lxx infection. Considering the fact that RSD occurs worldwide and a significant cause of sugarcane productivity, a better understanding of Lxx resistance-related processes may help develop tools and technologies for producing RSD-resistant sugarcane varieties through conventional and/or molecular breeding.
Project description:Streptococcus gallolyticus subsp. gallolyticus is a commensal of the human gastrointestinal tract and a pathogen of infective endocarditis and other biofilm-associated infections with exposed collagen. Therefore, this study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. It has been observed that lysozyme triggers biofilm formation divergently in the analyzed S. gallolyticus subsp. gallolyticus strains. The transcriptome analysis was performed for two strains which form more biofilm in the presence of lysozyme. Lysozyme leads to higher expression of genes of transcription and translation, of the dlt operon (cell wall modification), of hydrogen peroxide resistance proteins and of two immunity proteins which could be involved in biofilm formation. Furthermore, the adhesion ability of 73 different S. gallolyticus subsp. gallolyticus strains to collagen type I and IV was analyzed. High adhesion ability was observed for the strain UCN 34, whereas the strain DSM 16831 adhered only marginally to collagen. The full genome microarray analysis revealed strain-dependent gene expression due to adhesion. The expression of genes of a transposon and a phage region in strain DSM 16831 were increased, which corresponds to lateral gene transfer. Adherence to collagen leads to a change in the expression of genes of nutrients uptake in the strain UCN 34.
Project description:BackgroundSugarcane is an important sugar and economic crop in the world. Ratoon stunting Disease (RSD) of sugarcane, caused by Leifsonia xyli subsp. xyli, is widespread in countries and regions where sugarcane is grown and also limited to sugarcane productivity. Although the whole genome sequencing of Leifsonia xyli subsp. xyli was completed, progress in understanding the molecular mechanism of the disease has been slow because it is difficult to grow in culture.ResultsThe Leifsonia xyli subsp. xyli membrane protein gene Lxx18460 (anti-sigma K) was cloned from the Lxx-infected sugarcane cultivar GT11 at the mature stage using RT-PCR technique, and the gene structure and expression in infected sugarcane were analyzed. The Lxx18460 gene was transformed into Nicotiana tabacum by Agrobacterium tumefaciens-mediation. The transgenic tobacco plants overexpressing Lxx18460 had lower levels in plant height, leaf area, net photosynthetic rate and endogenous hormones of IAA, ABA and GA3, as well as lower activities of three antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than the wild type (WT) tobacco. With the plant growth, the expression of Lxx18460 gene and protein was increased. To better understand the regulation of Lxx18460 expression, transcriptome analysis of leaves from transgenic and wild type tobacco was performed. A total of 60,222 all-unigenes were obtained through BGISEQ-500 sequencing. Compared the transgenic plants with the WT plants, 11,696 upregulated and 5949 downregulated genes were identified. These differentially expressed genes involved in many metabolic pathways including signal transduction, biosynthesis of other secondary metabolism, carbohydrate metabolism and so on. Though the data presented here are from a heterologous system, Lxx 18460 has an adverse impact on the growth of tobacco; it reduces the photosynthesis of tobacco, destroys the activity of defense enzymes, and affects the levels of endogenous hormones, which indicate that Lxx18460 may act important roles in the course of infection in sugarcane.ConclusionsThis is the first study on analyzing the function of the membrane protein gene Lxx18460 of anti-sigma K (σK) factor in Leifsonia xyli subsp. xyli. Our findings will improve the understanding of the interaction between the RSD pathogen Leifsonia xyli subsp. xyli and sugarcane. The output of this study will also be helpful to explore the pathogenesis of RSD.