Project description:Although CD4 T cell senescence plays an important role in immunosenescence, the mechanism behind this process remains unclear. Here we show that T cell-specific Menin deficiency results in the premature senescence of CD4 T cells, which is accompanied by the senescence-associated secretory phenotype after antigenic stimulation and dysregulated cytokine production. Menin is required for the expansion and survival of antigen-stimulated CD4 T cells in vivo and acts by targeting Bach2, which is known to regulate immune homeostasis and cytokine production. Menin binds to the Bach2 locus, and controls its expression through maintenance of histone acetylation. Menin binding at the Bach2 locus and the Bach2 expression are decreased in the senescent CD4 T cells. These findings reveal a critical role of the Menin-Bach2 pathway in regulating CD4 T cell senescence and cytokine homeostasis, thus indicating the involvement of this pathway in the inhibition of immunosenescence. Gene expression in Menin WT-TH and Menin KO-TH
Project description:Although CD4 T cell senescence plays an important role in immunosenescence, the mechanism behind this process remains unclear. Here we show that T cell-specific Menin deficiency results in the premature senescence of CD4 T cells, which is accompanied by the senescence-associated secretory phenotype after antigenic stimulation and dysregulated cytokine production. Menin is required for the expansion and survival of antigen-stimulated CD4 T cells in vivo and acts by targeting Bach2, which is known to regulate immune homeostasis and cytokine production. Menin binds to the Bach2 locus, and controls its expression through maintenance of histone acetylation. Menin binding at the Bach2 locus and the Bach2 expression are decreased in the senescent CD4 T cells. These findings reveal a critical role of the Menin-Bach2 pathway in regulating CD4 T cell senescence and cytokine homeostasis, thus indicating the involvement of this pathway in the inhibition of immunosenescence.
Project description:Although CD4 T cell senescence plays an important role in immunosenescence, the mechanisms remain unclear. We found that T cell-specific Menin deficiency results in the premature senescence of CD4 T cells, accompanied by the senescence-associated secretory phenotype (SASP) after antigenic stimulation. TH1 and TH2 differentiation was dysregulated in Menin-knockout CD4 T cells. Bach2, which regulates SASP and TH differentiation, was identified as a Menin target. Menin binds to the Bach2 locus, and controls its expression through maintenance of histone acetylation. These findings reveal a critical role of the Menin-Bach2 pathway in regulating CD4 T cell senescence and homeostasis, thus indicating the involvement of this pathway in the inhibition of age-associated development of inflammatory diseases, which are induced by immunosenescence. Examination of transcriptional factor Menin binding and histone modefications in Menin WT and KO CD4 T cells
Project description:Although CD4 T cell senescence plays an important role in immunosenescence, the mechanisms remain unclear. We found that T cell-specific Menin deficiency results in the premature senescence of CD4 T cells, accompanied by the senescence-associated secretory phenotype (SASP) after antigenic stimulation. TH1 and TH2 differentiation was dysregulated in Menin-knockout CD4 T cells. Bach2, which regulates SASP and TH differentiation, was identified as a Menin target. Menin binds to the Bach2 locus, and controls its expression through maintenance of histone acetylation. These findings reveal a critical role of the Menin-Bach2 pathway in regulating CD4 T cell senescence and homeostasis, thus indicating the involvement of this pathway in the inhibition of age-associated development of inflammatory diseases, which are induced by immunosenescence.
Project description:Through a diversity of functional lineages, cells of the innate and adaptive immune system either drive or constrain immune reactions within tumors. Thus, while the immune system has a powerful ability to recognize and kill cancer cells, this function is often suppressed preventing clearance of disease. The transcription factor (TF) BACH2 controls the differentiation and function of multiple innate and adaptive immune lineages, but its role in regulating tumor immunity is not known. Here, we demonstrate that BACH2 is required to establish immunosuppression within tumors. We found that growth of subcutaneously implanted tumors was markedly impaired in Bach2-deficient mice and coincided with intratumoral activation of both innate and adaptive immunity but was dependent upon adaptive immunity. Analysis of tumor-infiltrating lymphocytes in Bach2-deficient mice revealed high frequencies of CD4+ and CD8+ effector cells expressing the inflammatory cytokine IFN-γ. Lymphocyte activation coincided with reduction in the frequency of intratumoral CD4+ Foxp3+ regulatory T (Treg) cells. Mechanistically, Treg-dependent inhibition of CD8+ T cells was required for BACH2-mediated tumor immunosuppression. These findings demonstrate that BACH2 is a key component of the molecular programme of tumor immunosuppression and identify a new target for development of therapies aimed at reversing immunosuppression in cancer. Analysis of tumor-infiltrating lymphocytes in Bach2-deficient mice revealed high frequencies of CD4+ and CD8+ effector cells expressing the inflammatory cytokine IFN-γ. Lymphocyte activation coincided with reduction in the frequency of intratumoral CD4+ Foxp3+ regulatory T (Treg) cells. Mechanistically, Treg-dependent inhibition of CD8+ T cells was required for BACH2-mediated tumor immunosuppression.
Project description:Through their functional diversification, CD4+ T cells play key roles in both driving and constraining immune-mediated pathology. Transcription factors are critical in the generation and maintenance of cellular diversity and negative regulators antagonistic to alternate fates often act in conjunction with positive regulators to stabilize lineage specification1. Polymorphisms within the locus encoding a transcription factor BACH2 are associated with diverse immune-mediated diseases including asthma2, multiple sclerosis3, Crohn¹s disease4-5, coeliac disease6, vitiligo7 and type 1 diabetes8. A role for Bach2 in maintaining immune homeostasis, however, has not been established. Here, we define Bach2 as a broad regulator of immune activation that stabilizes immunoregulatory capacity while repressing the differentiation programmes of multiple effector lineages in CD4+ T cells. Bach2 was required for efficient formation of regulatory (Treg) cells and consequently for suppression of lethal inflammation in a manner that was Treg cell dependent. Assessment of the genome-wide function of Bach2, however, revealed that it represses genes associated with effector cell differentiation. Consequently, its absence during Treg polarization resulted in inappropriate diversion to effector lineages. In addition, Bach2 constrained full effector differentiation within Th1, Th2 and Th17 cell lineages. These findings identify Bach2 as a key regulator of CD4+ T-cell differentiation that prevents inflammatory disease by controlling the balance between tolerance and immunity. The role of Bach2t to regulate immune homeostasis was investigated by mapping DNA binding profiles of Bach2 in iTreg condition. The function of Bach2 was also evaluated by comparing transcriptome in WT and Bach2-deficient iTreg cells and further comparison was done with transcriptome in naive, Th1, Th2, and Th17 conditions.
Project description:Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. Here, we found that Bach2 deficiency promotes the intestinal epithelial cell proliferation during homeostasis and facilitates the crypt regeneration after irradiation, resulting in a reduction of mortality. RNA-seq analysis of isolated crypts revealed that Bach2 deficiency altered expression of numerous genes including those regulating DSBs repair. Crypts were isolated from the small intestines of Bach2 KO and control mice (n=3, respectively) 10 days after tamoxifen administration. Total RNA was extracted for sequencing using RNA-Seq.
Project description:Bach2 regulates homeostasis of foxp3+ regulatory T cells and protects against fatal lung disease in mice. Cells from WT and Bach2 KO spleen were isolated. CD4+ CD25+ GITR+ (Treg) cells were sorted by FACS sorting. Total RNAs were extracted from sorted Treg cells using by Rneasy Kit (Qiagen).
Project description:Through their functional diversification, CD4+ T cells play key roles in both driving and constraining immune-mediated pathology. Transcription factors are critical in the generation and maintenance of cellular diversity and negative regulators antagonistic to alternate fates often act in conjunction with positive regulators to stabilize lineage specification1. Polymorphisms within the locus encoding a transcription factor BACH2 are associated with diverse immune-mediated diseases including asthma2, multiple sclerosis3, Crohn¹s disease4-5, coeliac disease6, vitiligo7 and type 1 diabetes8. A role for Bach2 in maintaining immune homeostasis, however, has not been established. Here, we define Bach2 as a broad regulator of immune activation that stabilizes immunoregulatory capacity while repressing the differentiation programmes of multiple effector lineages in CD4+ T cells. Bach2 was required for efficient formation of regulatory (Treg) cells and consequently for suppression of lethal inflammation in a manner that was Treg cell dependent. Assessment of the genome-wide function of Bach2, however, revealed that it represses genes associated with effector cell differentiation. Consequently, its absence during Treg polarization resulted in inappropriate diversion to effector lineages. In addition, Bach2 constrained full effector differentiation within Th1, Th2 and Th17 cell lineages. These findings identify Bach2 as a key regulator of CD4+ T-cell differentiation that prevents inflammatory disease by controlling the balance between tolerance and immunity.