Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:The presence of Donor-Specific anti-HLA Antibodies (DSA) is associated with an increased risk of both acute and chronic antibody-mediated rejection (AMR) in kidney allografts. AMR has remained challenging in kidney transplantation and is the major cause of late allograft loss. However, not all patients with DSA develop AMR, leading to the question of whether this represents accommodation, if other protective mechanisms exist or if this is actually a state of pre-rejection. Clinical and histological features, and gene expression profiles of kidney biopsy and blood samples of donor-specific antibody (DSA)+ patients without rejection were compared to antibody-mediated rejection (AMR) patients to elucidate the mechanisms involved in prevention of AMR. Of the 71 DSA+ patients, 46 had diagnosis of AMR and 25 did not show rejection. 50 DSA- patients without rejection were used as control. A subgroup of patients with available biopsy (n=61) and blood samples (n=54) were analyzed by microarrays. Both, DSA+/AMR+ and DSA+/AMR- biopsies showed increased expression of gene transcripts associated with cytotoxic T, natural killer cells, macrophages, interferon-gamma and rejection compared to DSA- biopsies. Regulatory T cell transcripts were up-regulated in DSA+/AMR+ and B cell transcripts in DSA+/AMR- biopsies. Whole blood gene expression analysis showed increased immune activity in only DSA+/AMR+ patients. There were no differentially expressed tolerant genes studied (n=14) in the blood or biopsy specimens of DSA+/AMR- patients. During a median 36 months follow-up, 4 DSA+/AMR- patients developed AMR, 12 continued to have DSAs but 9 lost DSAs. Gene expression profiles did not predict the development of AMR or persistence of DSAs. These results indicate increased immune activity in DSA+/AMR- biopsies despite lack of histologic findings of rejection.
Project description:The presence of Donor-Specific anti-HLA Antibodies (DSA) is associated with an increased risk of both acute and chronic antibody-mediated rejection (AMR) in kidney allografts. AMR has remained challenging in kidney transplantation and is the major cause of late allograft loss. However, not all patients with DSA develop AMR, leading to the question of whether this represents accommodation, if other protective mechanisms exist or if this is actually a state of pre-rejection. Clinical and histological features, and gene expression profiles of kidney biopsy and blood samples of donor-specific antibody (DSA)+ patients without rejection were compared to antibody-mediated rejection (AMR) patients to elucidate the mechanisms involved in prevention of AMR. Of the 71 DSA+ patients, 46 had diagnosis of AMR and 25 did not show rejection. 50 DSA- patients without rejection were used as control. A subgroup of patients with available biopsy (n=61) and blood samples (n=54) were analyzed by microarrays. Both, DSA+/AMR+ and DSA+/AMR- biopsies showed increased expression of gene transcripts associated with cytotoxic T, natural killer cells, macrophages, interferon-gamma and rejection compared to DSA- biopsies. Regulatory T cell transcripts were up-regulated in DSA+/AMR+ and B cell transcripts in DSA+/AMR- biopsies. Whole blood gene expression analysis showed increased immune activity in only DSA+/AMR+ patients. There were no differentially expressed tolerant genes studied (n=14) in the blood or biopsy specimens of DSA+/AMR- patients. During a median 36 months follow-up, 4 DSA+/AMR- patients developed AMR, 12 continued to have DSAs but 9 lost DSAs. Gene expression profiles did not predict the development of AMR or persistence of DSAs. These results indicate increased immune activity in DSA+/AMR- biopsies despite lack of histologic findings of rejection. All clinically indicated kidney transplant biopsies performed at our institution after January 2009 were reviewed and 263 patients with anti-HLA antibody testing at the time of biopsy were identified. There were 71 DSA+ and 192 DSA- patients (Figure 1). Of the 71 DSA+ patients, 46 had biopsy diagnosis of acute AMR (n=9) or chronic AMR (n=37), and 25 had normal histopathology or minimal non-specific interstitial fibrosis/tubular atrophy (IFTA). Of the 192 DSA- patients, 50 patients with normal histology and/or mild non-specific IFTA were used as a control group. Clinical and histopathological findings of these 3 groups (DSA+/AMR+, DSA+/AMR- and DSA-) were analyzed. A subgroup of patients who were enrolled in the Institutional Review Board-approved âImmune Monitoring Studyâ who had clinically indicated biopsy (n=61) and whole blood samples (n=54) stored were used for genomic analysis. Twenty-eight biopsy and blood samples from DSA+/AMR+ patients, 13 biopsy and 14 blood samples from DSA+/AMR- patients, and 20 biopsy and 12 blood samples from DSA- patients, were available for microarray analysis.
Project description:This SuperSeries is composed of the following subset Series: GSE20680: Whole Blood Cell Gene Expression Profiling in Patients with Coronary Artery Disease from the Cathgen Registry GSE20681: Whole Blood Cell Gene Expression Profiling in Patients with Coronary Artery Disease from the PREDICT Trial Refer to individual Series
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.