Project description:PTK7 was identified from a meta-analysis of 1905 non-small-cell lung cancer (NSCLC) samples across 12 datasets to be one of seven genes commonly up-regulated in lung adenocarcinoma (ADC). Using ADC cell lines NCI-H1299 and NCI-H2009, disruption of PTK7 resulted in decreased cell viability and induction of apoptosis. A xenotransplantation model of the cell lines with PTK7 knock-down also resulted in decreased tumor burden. We assayed gene expression in these cell lines after PTK7 knock-down by shRNA to uncover deregulated pathways and genes. 8 samples were analyzed. In each cell line, we knocked down PTK7 with 2 independent hairpins, and 2 control hairpins targeting luciferase and GFP. Thus, NCI-H1299 has 2 samples of PTK7 knock-down, and 2 samples of control knock down. NCI-H2009 has similar samples.
Project description:PTK7 was identified from a meta-analysis of 1905 non-small-cell lung cancer (NSCLC) samples across 12 datasets to be one of seven genes commonly up-regulated in lung adenocarcinoma (ADC). Using ADC cell lines NCI-H1299 and NCI-H2009, disruption of PTK7 resulted in decreased cell viability and induction of apoptosis. A xenotransplantation model of the cell lines with PTK7 knock-down also resulted in decreased tumor burden. We assayed gene expression in these cell lines after PTK7 knock-down by shRNA to uncover deregulated pathways and genes.
Project description:RNA-seq in isogenic RBM10-proficient and RBM10-deficient cells derived from lung adenocarcinoma cell lines HCC827 (parental and RBM10 knockout; control siRNA and RBM10 siRNA) and NCI-H1299 (parental and RBM10 knockout).
Project description:Purpose: We sequenced mRNA from 3 biological replicates each of NCI-H460 lung adenocarcinoma cell lines expressing shRNA against GFP (control) or PRMT5.We then determined differential gene expression to identify the relationship between PRMT5 expression and tumorigenesis. Methods: PRMT5 shRNA and control shRNA NCI-H460 cells were generated by lentivirus targeting PRMT5 or GFP(control), in triplicate,using illumina Novaseq™ 6000. Results:PRMT5 specific knockdown cells were enriched in the negative regulation of T cells and type I IFN response,we found that negative regulation of T cell molecules like Arg2, CD274 and IDO1 were increased in the PRMT5 shRNA group compared with the control group.
Project description:Knockdown LRRK1-CAPT in NCI-H1299 lung cancer cell line by two independent siRNAs, to investigate the mechanism of LRRK1-CAPT in regulation of cell proliferation.
Project description:In order to study the mechanism of co-inactivation of RB1 and TP53 in the transformation of lung adenocarcinoma to small cell lung cancer, we established the NCI-H1975 cell line with RB1 knockdown.NCI-H1975 cells were cultured and infected with lentivirus expressing RB1-shRNA (n=3) or pLKO.1-shRNA (n=3), We then performed transcriptome sequencing (RNA-seq) on the above cells.
Project description:To determined ZBTB11 and SET regulates genes in NCI-H1299, we esteblished NCI-H1299 cell lines in which ZBTB11 and SET has been knocked down by si-RNA. We then conducted differential expressed genes analysis using data generated form RNA-seq of H1299 cell lines at the condition of two genes knocked down.
Project description:T-box (TBX) transcription factors are evolutionary conserved genes and master transcriptional regulators. In mammals, TBX2 subfamily (TBX2, TBX3, TBX4, and TBX5) genes are expressed in the developing lung bud and tracheae. Our group previously showed that the expression of TBX2 subfamily was significantly high in human normal lungs, but markedly suppressed in lung adenocarcinoma (LUAD). To further elucidate their role in LUAD pathogenesis, we first confirmed abundant expression of protein products of the four members by immunostaining in adult human normal lung tissues. We also found overall suppressed expression of these genes and their corresponding proteins in a panel of human LUAD cell lines. Transient over-expression of each of the genes in human (NCI-H1299), and mouse (MDA-F471) derived lung cancer cells was found to significantly inhibit growth and proliferation as well as induce apoptosis. Genome-wide transcriptomic analyses on NCI-H1299 cells, overexpressing TBX2 gene subfamily, unraveled novel regulatory pathways. These included, among others, inhibition of cell cycle progression but more importantly activation of the histone demethylase pathway. When using a pattern-matching algorithm, we showed that TBX's overexpression mimic molecular signatures from azacitidine treated NCI-H1299 cells which in turn are inversely correlated to expression profiles of both human and murine lung tumors relative to matched normal lung. In conclusion, we showed that the TBX2 subfamily genes play a critical tumor suppressor role in lung cancer pathogenesis through regulating its methylating pattern, making them putative candidates for epigenetic therapy in LUAD.
Project description:Using H3K27ac ChIP-seq profile to map active enhancers in lung cancer and endometrial carcinoma cells ChIP-seq of H3K27ac was done in lung adenocarcinoma cell lines (NCI-H358 and NCI-H2009), squamous cell lung carcinoma cell lines (HCC95) and endometrial carcinoma cell lines (Ishikawa)