Project description:Hepatic drug metabolism plays a key role in determining drug response and safety. Studies of drug metabolism generate valuable information about regulation of genes encoding drug-metabolizing enzymes and enzyme functions that are critical in developing dosing guideline. However, current knowledge is insufficient to support dosing guideline for pregnant women. Specifically, substrates of a major drug-metabolizing enzyme CYP2D6 show increased elimination during pregnancy, but the underlying mechanisms are completely unknown largely due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy, recapitulating the clinically reported changes in CYP2D6-mediated drug metabolism. In these mice, pregnancy had minimal effects on the expression of hepatocyte nuclear factor (HNF) 4a, the transcription factor controlling basal CYP2D6 expression. Krüppel-like factor (KLF) 9 and small heterodimer partner (SHP) were found up- and down-regulated in Tg-CYP2D6 mouse livers during pregnancy, respectively. KLF9 enhanced HNF4a-mediated transactivation of the CYP2D6 promoter whereas SHP repressed it. Retinoic acid (RA), an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy. These results indicate that interplay among hepatic transcription factors HNF4a, SHP, and KLF9 underlies CYP2D6 induction during pregnancy, and that retinoic acid is a potential trigger. This is the first report on the mechanisms underlying CYP2D6 induction and illustrates the utility of humanized mice as an in vivo model to study altered drug disposition during pregnancy. Livers collected at pre-pregnancy, 21 days of pregnancy, and 7 days postpartum from CYP2D6-humanized mice.
Project description:Hepatic drug metabolism plays a key role in determining drug response and safety. Studies of drug metabolism generate valuable information about regulation of genes encoding drug-metabolizing enzymes and enzyme functions that are critical in developing dosing guideline. However, current knowledge is insufficient to support dosing guideline for pregnant women. Specifically, substrates of a major drug-metabolizing enzyme CYP2D6 show increased elimination during pregnancy, but the underlying mechanisms are completely unknown largely due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy, recapitulating the clinically reported changes in CYP2D6-mediated drug metabolism. In these mice, pregnancy had minimal effects on the expression of hepatocyte nuclear factor (HNF) 4a, the transcription factor controlling basal CYP2D6 expression. Krüppel-like factor (KLF) 9 and small heterodimer partner (SHP) were found up- and down-regulated in Tg-CYP2D6 mouse livers during pregnancy, respectively. KLF9 enhanced HNF4a-mediated transactivation of the CYP2D6 promoter whereas SHP repressed it. Retinoic acid (RA), an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy. These results indicate that interplay among hepatic transcription factors HNF4a, SHP, and KLF9 underlies CYP2D6 induction during pregnancy, and that retinoic acid is a potential trigger. This is the first report on the mechanisms underlying CYP2D6 induction and illustrates the utility of humanized mice as an in vivo model to study altered drug disposition during pregnancy.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility. Gene expression was measured in whole testis from males aged 62-86 days. Samples include 190 first generation lab-bred male offspring of wild-caught mice from the Mus musculus musculus - M. m. domesticus hybrid zone.
Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility.
Project description:Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before the acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin and hepatic cell necrosis. Moreover, LcS alleviated the acetaminophen-induced intestinal mucosal permeability, elevation in serum IL-1α and lipopolysaccharide, and decreased levels of serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol and sugars in the gut. Additionally, the transcriptome and proteomics showed that LcS mitigated the downregulation of metabolism and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.