Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:The goal of this study is to compare gene expression data for a well known model organism (Escherichia coli) using different technologies (NGS here, microarray from GSE48776).
Project description:Escherichia coli was evolved under growth conditions in which the carbon substrate alternated between glucose and either glycerol, xylose, or acetate with every tube of growth. Controls were also evolved to each substrate individually, without switching.
Project description:NsrR is a nitric oxide sensitive regulator of transcription. In Escherichia coli, NsrR is a repressor of the hmp gene encoding the flavohemoglobin that detoxifies nitric oxide. Several other transcription units (including ytfE, ygbA and hcp-hcr) are known to be subject to regulation by NsrR. In this study, chromatin immunoprecipitation and microarray analysis was used to identify NsrR binding sites in the chromosome of Escherichia coli strain MG1655. Keywords: ChIP-chip
Project description:Using a synthetic biosensor to couple production of a specific metabolite with cell growth, we spontaneously evolved cells under the selective condition toward the acquisition of genotypes that optimally reallocated cellular resources. Using 3-hydroxypropionic acid (3-HP) production from glycerol in Escherichia coli as a model system, we determined that spontaneous mutations in the conserved regions of proteins involved in global transcriptional regulation altered the expression of several genes associated with central carbon metabolism. Our study provides a new perspective on adaptive laboratory evolution (ALE) using synthetic biosensors, thereby supporting future efforts in metabolic pathway optimization.
Project description:Analysis of gene expression of mid log phase cultures of Escherichia coli Ancestor strain, and high temperature evolved lines 42-1, 42-2 and 42-3. Keywords: other