Project description:<p>Aberrant DNA methylation changes are known to occur during prostate cancer progression beginning with precursor lesions. Utilizing fifty nanograms of genomic DNA in Methylplex-Next Generation Sequencing (M-NGS) we mapped the global DNA methylation patterns in prostate tissues (n=17) and cells (n=2). Peaks were located from mapped reads obtained in each sequencing run using a Hidden Markov Model (HMM)-based algorithm previously used for Chip-Seq data analysis(<a href="http://www.sph.umich.edu/csg/qin/HPeak">http://www.sph.umich.edu/csg/qin/HPeak</a>). The total methylation events in intergenic/intronic regions between benign adjacent and cancer tissues were comparable. Promoter CGI methylation gradually increased from -12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues and approximately 20% of all CpG islands (CGIs) (68,508) were methylated in tissues. We observed distinct patterns in promoter methylation around transcription start sites, where methylation occurred directly on the CGIs, flanking regions and on CGI sparse promoters. Among the 6,691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer specific and several previously studied targets were among them. A novel cancer specific DMR in WFDC2 promoter showed 77% methylation in cancer (17/22), 100% methylation in transformed prostate cell lines (6/6), none in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested a role for DNA methylation in alternate transcription start site utilization. While methylated promoters containing CGIs had mutually exclusive H3K4me3 modification, the histone mark was absent in CGI sparse promoters. Finally, we observed difference in methylation of LINE-1 elements between transcription factor ERG positive and negative cancers. The comprehensive methylome map presented here will further our understanding of epigenetic regulation of the prostate cancer genome. Overall Design: We mapped the global DNA methylation patterns in prostate tissues (n=17) and cells (n=2) from fifty nanograms of genomic DNA using Methylplex-Next Generation Sequencing (M-NGS). For replicate analysis in cell lines, a total of 4 runs were completed for PrEC prostate normal cell line, and 5 runs were completed for LNCaP prostate cancer cell line. For tissue samples, 2 benign prostate samples were sequenced twice on Illumina next generation sequencing platform to access overall repeatability of M-NGS.</p>
Project description:We examined genome-wide patterns of DNA methylation from whole genome DNA methylation maps of five tissues (brain, kidney, lung, skeletal muscle, and pancreas) from one male koala and one female koala (Phascolarctos cinereus), and present the first whole genome, multi-tissue “methylome atlas” with information on tissue- and sex-specific variation of DNA methylation for a marsupial.
Project description:The broiler chicken is the globally most important source of commercially produced meat. While genetic approaches have played an important role in the development of chicken stocks, little is known about chicken epigenetics. We have now systematically analyzed the chicken DNA methylation toolkit and DNA methylation landscape. While overall DNA methylation patterns were similar to mammals, sperm DNA appeared distinctly hypomethylated, which correlates with the absence of the DNMT3L cofactor in the chicken genome. Additional analysis also revealed the presence of low-methylated regions in the chicken methylome, which are conserved gene regulatory elements that show tissue-specific methylation patterns. We also used whole-genome bisulfite sequencing to establish 56 single-base resolution methylomes of the broiler chicken from various tissues and developmental time points. Data analysis confirmed tissue-specific and time-dependent methylation patterns that were used to establish a DNA methylation clock to predict sample age and measure stock performance. Our study thus provides a comprehensive resource for the chicken methylome and establishes a novel epigenetic tool for livestock performance analysis.
Project description:Methylation profiling of human prostate cancer tissues and cell lines. We mapped the global DNA methylation patterns in prostate tissues (n=17) and cells (n=2) from fifty nanograms of genomic DNA using Methylplex-Next Generation Sequencing (M-NGS). In addition, genes methylated in LNCaP and significantly overexpressed after 5’Azacytidine treatment of LNCaP cells are assessed by Agilent gene expression microarray. The comprehensive methylome map presented here will further our understanding of epigenetic regulation of the prostate cancer genome. [Gene expression] Two-condition experiment, control DMSO-treated vs. 5'aza-treated LNCaP at two time points (@24 and 48 hours) in replicates.
Project description:DNA methylation is a fundamental epigenetic mark that governs chromatin organization, cell identity, and gene expression. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing of 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are >99.5% identical, demonstrating robustness of cell identity programs to genetic variation and environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny, and identifies methylation patterns retained since gastrulation. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely methylated loci are rare and are enriched for CpG islands, polycomb targets, and CTCF binding sites, suggesting a role in shaping cell type-specific chromatin looping. The atlas provides an essential resource for interpretation of disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.
Project description:Understanding cell-type-specific epigenetic codes on a global level is a major challenge after the sequencing of the human genome has been completed. Here we applied methyl-CpG immunoprecipitation (MCIp) to obtain comparative methylation profiles of coding and noncoding genes in three human tissues, testis, brain, and monocytes. Forty-four mainly testis-specific promoters were independently validated using bisulfite sequencing or single-gene MCIp, confirming the results obtained by the MCIp microarray approach. We demonstrate the previously unknown somatic hypermethylation at many CpG-rich, testis-specific gene promoters, in particular in ampliconic areas of the Y chromosome. We also identify a number of miRNA genes showing tissue-specific methylation patterns. The comparison of the obtained tissue methylation profiles with corresponding gene expression data indicates a significant association between tissue-specific promoter methylation and gene expression, not only in CpG-rich promoters. In summary, our study highlights the exceptional epigenetic status of germ-line cells in testis and provides a global insight into tissue-specific DNA methylation patterns. Keywords: MCIp-on-Chip The promoter hypomethylation profiles of the two somatic tissues (monocytes and brain) were compared to human testis (reference). The set includes two hybridisations with independent testis samples for each comparison. Each comparison uses a set of two microarrays.
Project description:DNA methylation alters the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that four CLASSY proteins (CLSY1-4), which are differentially expressed during plant development, play major roles in controlling tissue-specific DNA methylation patterns. Depending on the tissue, the genetic requirements for specific CLSYs differ significantly and on a global scale, certain clsy mutants are sufficient to largely shift the epigenetic landscape between tissues. Together, these findings not only reveal substantial epigenetic diversity between tissues, but assign these changes to specific CLSY proteins, revealing how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development.
Project description:DNA methylation alters the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that four CLASSY proteins (CLSY1-4), which are differentially expressed during plant development, play major roles in controlling tissue-specific DNA methylation patterns. Depending on the tissue, the genetic requirements for specific CLSYs differ significantly and on a global scale, certain clsy mutants are sufficient to largely shift the epigenetic landscape between tissues. Together, these findings not only reveal substantial epigenetic diversity between tissues, but assign these changes to specific CLSY proteins, revealing how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development.
Project description:DNA methylation alters the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that four CLASSY proteins (CLSY1-4), which are differentially expressed during plant development, play major roles in controlling tissue-specific DNA methylation patterns. Depending on the tissue, the genetic requirements for specific CLSYs differ significantly and on a global scale, certain clsy mutants are sufficient to largely shift the epigenetic landscape between tissues. Together, these findings not only reveal substantial epigenetic diversity between tissues, but assign these changes to specific CLSY proteins, revealing how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development.
Project description:DNA methylation alters the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that four CLASSY proteins (CLSY1-4), which are differentially expressed during plant development, play major roles in controlling tissue-specific DNA methylation patterns. Depending on the tissue, the genetic requirements for specific CLSYs differ significantly and on a global scale, certain clsy mutants are sufficient to largely shift the epigenetic landscape between tissues. Together, these findings not only reveal substantial epigenetic diversity between tissues, but assign these changes to specific CLSY proteins, revealing how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development.