Project description:Analysis of genes induced by CHIR99021 CHIR99021 is a inhibitor of glycogen synthase kinase 3 (GSK3) and can promote B6 mESC sef-renewal when combined with LIF in serum condition. Total RNA obtained from B6 mESCs treated with LIF or LIF/CHIR99021 for 12 hours.
Project description:It has been demonstrated that CHIR99021 promotes self-renewal of mouse embryonic stem cells, however, the target genes of CHIR99021 is not fully understood. AICAR is the activator of AMP-activated protein kinase. It is reported that AICAR plays important role in mouse embryonic stem cells, however the moleculor mechanism of this phenomenon is unknown. To better understand the downstream target genes of CHIR99021 and AICAR, we performed Microarray analyses to identify their downstream targets. The data show the genes regulated by CHIR99021 or AICAR. J1 mESCs maintained in medium containing 1000 U/mL LIF and supplemented without or with CHIR99021 or AICAR for 24 hours, then total RNA was extracted for analysis.
Project description:Analysis of genes induced by 2I condition 2i contains glycogen synthase kinase 3 (GSK3) and mitogen-activated protein kinase kinase (MEK) inhibitors: 3uM Chir99021 and 1uM PD0325901 Total RNA obtained from B6 mESCs treated with LIF or LIF/2I for 12 hours.
Project description:Analysis of genes induced by CHIR99021 CHIR99021 is a inhibitor of glycogen synthase kinase 3 (GSK3) and can promote B6 mESC sef-renewal when combined with LIF in serum condition.
Project description:We measured genome-wide chromatin accessibility of embryonic stem cells derived from Diversity Outbred mice. We cultured cells in media with LIF + GSK3-beta inhibitor CHIR99021.
Project description:To identify downstream targets of Jak/Stat3 pathways without being distracted by differentiation signalings from MEK/ERK pathway, we exploited a engineered B6 cells, which stably stably expressing a chimeric receptor (GRgp-Y118F). The chimeric receptor can induce the phosphorylation of Stat3 by GCSF without activating the MEK/ERK pathway. To mimic the effect of GCSF, the chimeric B6 cells were also treated with LIF plus a selective MEK chemical inhibitor, PD0325901, to induce LIF/Jak/Stat3 but MEK/ERK pathways. mESCs starved in serum free growth medium for 6hrs were treated with GCSF or with LIF plus PD0325901 for 1hr, after which total RNA was extracted for analysis.
Project description:Leukemia Inhibitory Factor (LIF) plays an essential role in the maintenance of pluripotency of mouse embryonic stem cells (mESCs). LIF withdrawal induces mESC differentiation. To define noval pluripotent factors downstream of LIF signaling, cDNA microarray was used and seveal well-known pluripotent genes were found to respond to LIF withdrawal, including Klf4, Esrrb, Tbx3, and Prdm14. mESCs were cultured in presence or absence of LIF for two days and RNAs extracted from these cells were subjected to microarray analysis
Project description:Enhancers are distal regulators of gene expression that shape cell identity and regulate cell fate transitions. Mouse embryonic stem cells (mESCs) are a typical example of cells whose pluripotent identity is maintained by a complex enhancer landscape, that is drastically altered upon differentiation. Genome-wide chromatin accessibility and histone modification assays are commonly used as a proxy for enhancer location, strength and dynamics. Here, we applied STARR-seq, a genome-wide plasmid-based assay, to measure the enhancer potential of genomic loci in a plasmid context in “ground-state” (2i+LIF; 2iL-ESCs) and “metastable” (serum+LIF; SL-ESCs) embryonic stem cells.
Project description:Enhancers are distal regulators of gene expression that shape cell identity and regulate cell fate transitions. Mouse embryonic stem cells (mESCs) are a typical example of cells whose pluripotent identity is maintained by a complex enhancer landscape, that is drastically altered upon differentiation. Genome-wide chromatin accessibility and histone modification assays are commonly used as a proxy for enhancer location, strength and dynamics. Here, we applied STARR-seq, a genome-wide plasmid-based assay, to measure the enhancer potential of genomic loci in a plasmid context in “ground-state” (2i+LIF; 2iL-ESCs) and “metastable” (serum+LIF; SL-ESCs) embryonic stem cells.