Project description:Investigation of whole genome gene expression level changes in mouse 4T1 mammary tumors expressing Cebpb shRNA, compared to 4T1 tumors expressing control shRNA. Analysis of mouse 4T1 mammary tumors expressing Cebpb shRNA compared to control shRNA are further described in Johansson & Berg et al 2012.
Project description:4T1 mouse mammary carcinoma cells have an autocrine FGFR active loop leading to constitutive activation of downstream signaling pathways. We found that FGFR inhibitors have a strong effect on 4T1 tumors in-vivo. We used microarray to understand the contribution of FGFR signaling to the tumor formation upon TKI258 treatment. 4T1 cells were injected in the 4th mammary gland of Balb/C mice. After 7 days, daily treatment with TKI258 or water was performed for 14 days. At the end of the experiment, the RNA were extracted from three individual tumors per condition and hybridized on Affimetrix microarrays.
Project description:Investigation of whole genome gene expression level changes in mouse 4T1 mammary tumors expressing Cebpb shRNA, compared to 4T1 tumors expressing control shRNA. Analysis of mouse 4T1 mammary tumors expressing Cebpb shRNA compared to control shRNA are further described in Johansson & Berg et al 2012. A 10 chip study using total RNA recovered from five separate 4T1 tumors expressing Cebpb shRNA and five separate 4T1 tumors expressing control shRNA. All tumors were surgically removed after subcutaneous implantation in syngeneic BALB/c mice two weeks earlier. Each chip measures the expression level of 44,170 genes from Mus Musculus with fourteen 24-mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.
Project description:4T1 mouse mammary carcinoma cells have an autocrine FGFR active loop leading to constitutive activation of downstream signaling pathways. We found that FGFR inhibitors have a strong effect on 4T1 tumors in-vivo. We used microarray to understand the contribution of FGFR signaling to the tumor formation upon TKI258 treatment.
Project description:This is an investigation of whole genome gene expression level in tissues of mice stimulated by LPS, FK565 or LPS + FK565 in vivo and ex vivo. We show that parenteral administration of a pure synthetic Nod1 ligand, FK565, induces site-specific vascular inflammation in mice, which is prominent in aortic root including aortic valves, slight in aorta and absent in other arteries. The degree of respective vascular inflammation is associated with persistent high expression of proinflammatory chemokine/cytokine genes in each tissue in vivo by microarray analysis, and not with Nod1 expression levels. The ex vivo production of proinflammatory chemokine/cytokine by Nod1 ligand is higher in aortic root than in other arteries from normal murine vascular tissues, and also higher in human coronary artery endothelial cells (HCAEC) than in human pulmonary artery endothelial cells (HPAEC), suggesting that site-specific vascular inflammation is at least in part ascribed to an intrinsic nature of the vascular tissue/cell itself.