Project description:Kruppel-like factors are a subclass of zinc finger transcription factors that play important roles in different aspects of cell growth, development, and differentiation. Our group have identified KLF13 as an essential transcription factor for the late expression of chemokine RANTES in T lymphocytes. However, very little is known about the role of KLF13 in T cells and other potential transcriptional targets. To address this, we sought to identify genes that are regulated by KLF13 in mouse T cells. Using microarray analysis, we compared gene expression in activated CD3+ T lymphocytes from wild type and Klf13-/- animals. We isolated CD3+ T-cells from WT and KO mouse spleen. Isolated cells were activated with CD3 and CD28 for 4 days and RNA was extracted. All samples were hybrdized and gene expression were analyzed with Affymetrix microarrays.
Project description:It is known that ubiquitination is important for T cell receptor (TCR) signaling during T cell activation but the breadth of ubiquitination events triggered during TCR signaling is not completely understood. This dataset utilizes di-glycine remnant profiling combined with mass spectrometry to identify a global landscape of ubiquitination events downstream of the TCR and to quantify changes ubiquitin abundance in response to TCR stimulation. Additionally, whole cell proteomics data were generated to measure protein abundances during TCR stimulation. Mouse primary T cells were isolated, proliferated and either remained resting or stimulated with CD3/CD28 to activate downstream signaling through the TCR and co-stimulatory pathways. Di-glycine remnant profiling and whole cell proteomics was performed on rested cells and cells that had undergone CD3/CD28 TCR stimulation for 4 hours. These data were analyzed to identify the ubiquitination events during TCR activation and to quantify the change in peptide-based ubiquitin abundance and total protein abundance over the course of the 4 hour TCR stimulation. Integration of di-glycine and whole cell proteomics was used to generate protein-specific predictions of whether ubiquitination events downstream of TCR signaling lead to a decrease in associated protein abundance. The analysis of these data suggests that T cell activation leads to an increase in ubiquitination that is not associated with proteasomal or lysosomal degradation.
Project description:To understand the mechanisms through which JunB regulates Tregs-mediated immune regulation, we examined the global gene expression profiles in the JunB WT and KO Tregs by performing RNA sequencing (RNA-seq) analysis.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.