Project description:The periodontal ligament(PDL) and dental pulp tissues of human permanent teeth have a number of differences in their developmental processes, histological characteristics and functions. It can be figured out that these differences are attributable to genetic backgrounds of their cells organized tissues. The purpose of this study was to identify the gene-expression profiles and their molecular biological differences of periodontal ligament and dental pulp tissues from the human permanent teeth.
Project description:The aim of this study was to evaluate and compare the gene expression profiles of dental follicle and periodontal ligament in humans, which can possibly explain their functions of dental follicle and PDL such as eruption coordination and stress resorption. That may apply this information to clinical problem like eruption disturbance and to periodontal tissue engineering. PDL samples were obtained from permanent premolars (n=11) and dental follicle samples were obtained during extraction of supernumerary teeth (n=4). Comparative cDNA microarray analysis revealed several differences in gene expression between permanent PDL and dental follicles.
Project description:Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These differences are attributable to their genetic backgrounds. Therefore the purpose of this study is to compare the differences of dental pulp in deciduous and permanent teeth. Pulp samples were obtained from permanent premolars (n=6, aged 11-14 years) and deciduous teeth (n=6, aged 11-14 years). Comparative cDNA microarrary analysis revealed several differences in gene expression between the deciduous and permanent pulp tissues. Each GSM record represents a pulp sample pooled from two teeth samples.
Project description:Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These differences are attributable to their genetic backgrounds. Therefore the purpose of this study is to compare the differences of dental pulp in deciduous and permanent teeth.
Project description:Establishment of human teeth relies on coordinated formation of dentin-pulp complex for nurturing and periodontal tissues for anchoring in alveolar bone. The exact cell origin of dentin-pulp complex and periodontal tissues, and the integrative developmental process remain elusive. Here, we identified a bilaminar core of Cd24a+ and Pax9+ stem cells that governs the tooth establishment and persists into adulthood. Specifically, Cd24a+ stem cells gave rise to the dentin-pulp complex while Pax9+ stem cells mainly generated periodontal tissues as well as partial dental pulp. DTA-mediated cell ablation of the Cd24a+/Pax9+ stem cells significantly compromised tooth establishment. Moreover, during development, the Cd24a+/Pax9+ bilaminar core concentrated on the apical region, collectively migrated and contributed to the newly formed dental root, potentially guided by PDGF-B derived from the alveolar bone. Integrated multi-omic analysis and spatial mapping further revealed lineage-associated key signaling pathways in Cd24a+/Pax9+ stem cells and the unique organization of different cell compositions. Finally, the CD24+/PAX9+ bilaminar core was also detected in human teeth at different stages, suggesting it a conserved developmental mechanism. Together, our work identified a unique bilaminar core of bona fide dental stem cells governing tooth establishment and might guide the future regenerative therapy to treat pulpitis, pulp necrosis and periodontal diseases.
Project description:Deciduous and permanent human teeth represent a model system to study ageing of mesenchymal populations. Aging is tightly connected to self-renewal and proliferation and thus, mapping potential molecular differences in these characteristics between populations constitutes an important task. Specifically designed microarray panels were used. We have detected a number of molecules that were differentially expressed in dental pulp mesenchyme from deciduous and permanent teeth extracted from young children and adults, respectively. Among the differentially regulated genes HMGA2, a stem cell-associated marker, stood out as a remarkable example with a robust expression in deciduous pulp cells. In addition to this, we discovered that several proliferation-related genes, including CDC2A and CDK4, were up-regulated in deciduous pulp cells, while matrix genes COL1A1, fibronectin and several signaling molecules, such as VEGF, FGFr-1 and IGFr-1 were up-regulated in the pulp cells from permanent teeth. Taken together, our data suggest that deciduous pulp cells are more robust in self- renewal and proliferation, whereas adult dental pulp cells are more capable of signaling and matrix synthesis.
Project description:Using the HumanMethylation450 Beadchip, whole genomes of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs) were compared.The DNA methylation profiles were obtained across approximately 485,512 CpGs in human odontogenic stem cells samples. Samples included DPSCs, DFPCs and PDLSCs from each 4 (12 in total) human individuals.