ABSTRACT: Endocrine response in invasive lobular carcinoma is characterized by unique estrogen-mediated gene expression and de novo tamoxifen resistance
Project description:Endocrine response in invasive lobular carcinoma is characterized by unique estrogen-mediated gene expression and de novo tamoxifen resistance (SUM44)
Project description:Endocrine response in invasive lobular carcinoma is characterized by unique estrogen-mediated gene expression and de novo tamoxifen resistance (MM134)
Project description:Endocrine response in invasive lobular carcinoma is characterized by unique estrogen-mediated gene expression and de novo tamoxifen resistance (MM134)
Project description:Endocrine response in invasive lobular carcinoma is characterized by unique estrogen-mediated gene expression and de novo tamoxifen resistance (SUM44)
Project description:Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer that is frequently associated with favorable outcomes, as ~90% of ILC express the estrogen receptor (ER). However, recent retrospective analyses suggest that ILC patients receiving adjuvant endocrine therapy may not benefit from improved outcomes versus other breast cancer patients. Based on these observations, we characterized ER function and endocrine response in ILC models. The ER-positive ILC cell lines MDA MB 134VI (MM134) and SUM44PE were used to examine the ER-regulated transcriptome in vitro via gene expression microarray analyses and ER ChIP-Seq. In parallel, estrogen response was assessed in vivo in the patient-derived ILC xenograft HCI-013. Response to endocrine therapy was also examined in ILC cell lines. We identified 915 genes that were uniquely E2-regulated in ILC cell lines versus other breast cancer cell lines, and a subset of these genes were also regulated in vivo in HCI-013. We observed that MM134 were de novo tamoxifen resistant, and were induced to grow by 4-hydroxytamoxifen, as well as other anti-estrogens, as partial agonists. Growth was accompanied by agonist activity of tamoxifen on ER-mediated gene expression. Though tamoxifen induced cell growth, MM134 cells required FGFR1 signaling to maintain viability and were sensitive to combined endocrine therapy and FGFR1 inhibition. Our observation that ER drives a unique program of gene expression in ILC cells correlates with the ability of tamoxifen to induce growth in these cells. Targeting growth factors using FGFR1 inhibitors may block survival pathways required by ILC and reverse tamoxifen resistance.
Project description:Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer that is frequently associated with favorable outcomes, as ~90% of ILC express the estrogen receptor (ER). However, recent retrospective analyses suggest that ILC patients receiving adjuvant endocrine therapy may not benefit from improved outcomes versus other breast cancer patients. Based on these observations, we characterized ER function and endocrine response in ILC models. The ER-positive ILC cell lines MDA MB 134VI (MM134) and SUM44PE were used to examine the ER-regulated transcriptome in vitro via gene expression microarray analyses and ER ChIP-Seq. In parallel, estrogen response was assessed in vivo in the patient-derived ILC xenograft HCI-013. Response to endocrine therapy was also examined in ILC cell lines. We identified 915 genes that were uniquely E2-regulated in ILC cell lines versus other breast cancer cell lines, and a subset of these genes were also regulated in vivo in HCI-013. We observed that MM134 were de novo tamoxifen resistant, and were induced to grow by 4-hydroxytamoxifen, as well as other anti-estrogens, as partial agonists. Growth was accompanied by agonist activity of tamoxifen on ER-mediated gene expression. Though tamoxifen induced cell growth, MM134 cells required FGFR1 signaling to maintain viability and were sensitive to combined endocrine therapy and FGFR1 inhibition. Our observation that ER drives a unique program of gene expression in ILC cells correlates with the ability of tamoxifen to induce growth in these cells. Targeting growth factors using FGFR1 inhibitors may block survival pathways required by ILC and reverse tamoxifen resistance.
Project description:Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer that is frequently associated with favorable outcomes, as ~90% of ILC express the estrogen receptor (ER). However, recent retrospective analyses suggest that ILC patients receiving adjuvant endocrine therapy may not benefit from improved outcomes versus other breast cancer patients. Based on these observations, we characterized ER function and endocrine response in ILC models. The ER-positive ILC cell lines MDA MB 134VI (MM134) and SUM44PE were used to examine the ER-regulated transcriptome in vitro via gene expression microarray analyses and ER ChIP-Seq. In parallel, estrogen response was assessed in vivo in the patient-derived ILC xenograft HCI-013. Response to endocrine therapy was also examined in ILC cell lines. We identified 915 genes that were uniquely E2-regulated in ILC cell lines versus other breast cancer cell lines, and a subset of these genes were also regulated in vivo in HCI-013. We observed that MM134 were de novo tamoxifen resistant, and were induced to grow by 4-hydroxytamoxifen, as well as other anti-estrogens, as partial agonists. Growth was accompanied by agonist activity of tamoxifen on ER-mediated gene expression. Though tamoxifen induced cell growth, MM134 cells required FGFR1 signaling to maintain viability and were sensitive to combined endocrine therapy and FGFR1 inhibition. Our observation that ER drives a unique program of gene expression in ILC cells correlates with the ability of tamoxifen to induce growth in these cells. Targeting growth factors using FGFR1 inhibitors may block survival pathways required by ILC and reverse tamoxifen resistance. Cells were hormone deprived by replacing growth medium with IMEM+2% charcoal stripped serum for 3 days. Following deprivation, cells were treated for 3 or 24 hours with 1nM E2 or vehicle (0.01% EtOH) in biological quadruplicate. Following treatment, cells were lysed and RNA was harvested using the Illustra RNAspin Mini kit (GE Health). cRNA synthesis and labeling was performed using the Ambion MessageAmp Premier Kit (Life Technologies), and cRNA was hybridized to U133A 2.0 arrays (Affymetrix, Santa Clara, CA). cRNA synthesis and labeling, hybridization, and scanning were performed by the University of Pittsburgh Cancer Biomarkers Facility.
Project description:Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer that is frequently associated with favorable outcomes, as ~90% of ILC express the estrogen receptor (ER). However, recent retrospective analyses suggest that ILC patients receiving adjuvant endocrine therapy may not benefit from improved outcomes versus other breast cancer patients. Based on these observations, we characterized ER function and endocrine response in ILC models. The ER-positive ILC cell lines MDA MB 134VI (MM134) and SUM44PE were used to examine the ER-regulated transcriptome in vitro via gene expression microarray analyses and ER ChIP-Seq. In parallel, estrogen response was assessed in vivo in the patient-derived ILC xenograft HCI-013. Response to endocrine therapy was also examined in ILC cell lines. We identified 915 genes that were uniquely E2-regulated in ILC cell lines versus other breast cancer cell lines, and a subset of these genes were also regulated in vivo in HCI-013. We observed that MM134 were de novo tamoxifen resistant, and were induced to grow by 4-hydroxytamoxifen, as well as other anti-estrogens, as partial agonists. Growth was accompanied by agonist activity of tamoxifen on ER-mediated gene expression. Though tamoxifen induced cell growth, MM134 cells required FGFR1 signaling to maintain viability and were sensitive to combined endocrine therapy and FGFR1 inhibition. Our observation that ER drives a unique program of gene expression in ILC cells correlates with the ability of tamoxifen to induce growth in these cells. Targeting growth factors using FGFR1 inhibitors may block survival pathways required by ILC and reverse tamoxifen resistance. Cells were hormone deprived by replacing growth medium with IMEM+10% charcoal stripped serum for 3 days. Following deprivation, cells were treated for 3 or 24 hours with 1nM E2 or vehicle (0.01% EtOH) in biological quadruplicate. Following treatment, cells were lysed and RNA was harvested using the Illustra RNAspin Mini kit (GE Health). cRNA synthesis and labeling was performed using the Ambion MessageAmp Premier Kit (Life Technologies), and cRNA was hybridized to U133A 2.0 arrays (Affymetrix, Santa Clara, CA). cRNA synthesis and labeling, hybridization, and scanning were performed by the University of Pittsburgh Cancer Biomarkers Facility.
Project description:One-third of all ER+ breast tumors treated with endocrine therapy fail to respond, and the remainder are likely to relapse in the future. Almost all data on endocrine resistance has been obtained in models of invasive ductal carcinoma (IDC). However, invasive lobular carcinomas (ILC) comprise up to 15% of newly diagnosed invasive breast cancers diagnosed each year and, while the incidence of IDC has remained relatively constant during the last 20 years, the prevalence of ILC continues to increase among postmenopausal women. We report a new model of Tamoxifen (TAM)-resistant invasive lobular breast carcinoma cells that provides novel insights into the molecular mechanisms of endocrine resistance. SUM44 cells express ER and are sensitive to the growth inhibitory effects of antiestrogens. Selection for resistance to 4-hydroxytamoxifen led to the development of the SUM44/LCCTam cell line, which exhibits decreased expression of estrogen receptor alpha (ERα) and increased expression of the estrogen-related receptor gamma (ERRγ). Knockdown of ERRγ in SUM44/LCCTam cells by siRNA restores TAM sensitivity, and overexpression of ERRγ blocks the growth-inhibitory effects of TAM in SUM44 and MDA-MB-134 VI lobular breast cancer cells. ERRγ-driven transcription is also increased in SUM44/LCCTam, and inhibition of activator protein 1 (AP1) can restore or enhance TAM sensitivity. These data support a role for ERRγ/AP1 signaling in the development of TAM resistance, and suggest that expression of ERRγ may be a marker of poor Tamoxifen response.
Project description:One-third of all ER+ breast tumors treated with endocrine therapy fail to respond, and the remainder are likely to relapse in the future. Almost all data on endocrine resistance has been obtained in models of invasive ductal carcinoma (IDC). However, invasive lobular carcinomas (ILC) comprise up to 15% of newly diagnosed invasive breast cancers diagnosed each year and, while the incidence of IDC has remained relatively constant during the last 20 years, the prevalence of ILC continues to increase among postmenopausal women. We report a new model of Tamoxifen (TAM)-resistant invasive lobular breast carcinoma cells that provides novel insights into the molecular mechanisms of endocrine resistance. SUM44 cells express ER and are sensitive to the growth inhibitory effects of antiestrogens. Selection for resistance to 4-hydroxytamoxifen led to the development of the SUM44/LCCTam cell line, which exhibits decreased expression of estrogen receptor alpha (ERα) and increased expression of the estrogen-related receptor gamma (ERRγ). Knockdown of ERRγ in SUM44/LCCTam cells by siRNA restores TAM sensitivity, and overexpression of ERRγ blocks the growth-inhibitory effects of TAM in SUM44 and MDA-MB-134 VI lobular breast cancer cells. ERRγ-driven transcription is also increased in SUM44/LCCTam, and inhibition of activator protein 1 (AP1) can restore or enhance TAM sensitivity. These data support a role for ERRγ/AP1 signaling in the development of TAM resistance, and suggest that expression of ERRγ may be a marker of poor Tamoxifen response. Experiment Overall Design: Total RNA was extracted from sub-confluent T-25 cm^2 tissue culture flasks of SUM44 and LCCTam cells, then processed and arrayed. Microarray data quality was then assessed using several tools, including those recommended by Affymetrix and a series of additional QC measures. The Robust Multiple-Array Average (RMA) method was used to preprocess the raw gene expression data, as implemented in the Bioconductor project (http://bioconductor.org). We then isolated a reduced dimension dataset that included genes that exhibit â¥2 fold change, p<0.05 and genes with intensity â¥log2(10) in both SUM44 and SUM44/LCCTam groups. Data visualization before and after dimensionality reduction was facilitated by multidimensional scaling as estimated using Principal Component Analysis (PCA) and Discriminant Component Analysis (DCA), to ensure that the global structure of the data was not altered by dimensionality reduction procedures.