Project description:Background: the major risk factor for glaucoma is ocular hypertension, a disorder caused by reduced outflow of aqueous humor through the trabecular meshwork. In a previous pharmacogenomic screen for genes associated with ocular hypertension, we identified the novel G protein-coupled receptor, GPR158, and showed it protects against age-related ocular hypertension in mice. Here we show that the glucocorticoid, dexamethasone, increases the level of accumulated GPR158 protein in the trabecular meshwork of the human eye, ex vivo. Methods: we performed gene expression microarray profiling of TM-1 cells thar overexpress GPR158 Results: we show that the glucocorticoid, dexamethasone, increases the level of accumulated GPR158 protein in the trabecular meshwork of the human eye, ex vivo. Gene sets controlled by dexamethasone, TGFB1 and TP53 were identified, as well as genes asso-ciated with ossification. GPR158 over-expression in cells of the immortalized trabecular meshwork cell line TM-1 did not affect the fibrotic response to dexamethasone or cause ossification, and loss of GPR158 in knockout mice did not affect the development of glucocorticoid-induced ocular hypertension. However, GPR158 over-expression was cytoprotective. Discussion: Our findings suggest that GPR158 activated the cytoprotective branch of the unfolded protein response and bound the TP53-inducible protein PPP1R10, a regulatory subunit of PPI regulatory subunit of PPI. Our data support the idea that GPR158 protects the trabecular meshwork, and suggest possible mechanisms.
Project description:Glucocorticoids with different chemical structures but similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular meshwork cells. Gene expression changes of human trabecular meshwork cells, TM 86 and TM 93, due to treatment with dexamethasone (Dex), fluocinolone acetonide (FA), and triamcinolone acetonide (TA).
Project description:TGF-beta levels are known to increase in the aqueous humor of eye cells in patients with glaucoma. Increase TGF-beta is assumed to have a biochemical impact on the trabecular meshwork, and an increase in extracellular matrix formation, which may be responsible for decrease outflow facility of the eye. This may increase extracellular pressure, causing glaucoma. TGF-beta 1 may be the cause of abnormal accumulation of extracellular matrices in trabecular meshwork of eyes with primary open angle glaucoma. Transforming growth factor (TGF)-beta2 regulates the expression of proteoglycans in aqueous humor from human glaucomatous eyes. To identify gene expression changes as a result of TGF-beta1 and 2 treatment of human trabecular meshwork cells. We expect to see a change in expression of the proteoglycans in HTM cells as a response to TGF-beta treatment. Human Trabecular Meswork cells in the eye were bathed by aqueous humor. TM cells were removed from individuals with the following ages: 16,66,67,73, and 76. Each individual was treated with EtOH (control), TGF-beta1, or TGF-beta2. Total RNA from each individual was pooled for each chip. Technical replicates were created for each treatment type, for a total of 6 chips.
Project description:TGF-beta levels are known to increase in the aqueous humor of eye cells in patients with glaucoma. Increase TGF-beta is assumed to have a biochemical impact on the trabecular meshwork, and an increase in extracellular matrix formation, which may be responsible for decrease outflow facility of the eye. This may increase extracellular pressure, causing glaucoma. TGF-beta 1 may be the cause of abnormal accumulation of extracellular matrices in trabecular meshwork of eyes with primary open angle glaucoma. Transforming growth factor (TGF)-beta2 regulates the expression of proteoglycans in aqueous humor from human glaucomatous eyes. To identify gene expression changes as a result of TGF-beta1 and 2 treatment of human trabecular meshwork cells. We expect to see a change in expression of the proteoglycans in HTM cells as a response to TGF-beta treatment. Human Trabecular Meswork cells in the eye were bathed by aqueous humor. TM cells were removed from individuals with the following ages: 16,66,67,73, and 76. Each individual was treated with EtOH (control), TGF-beta1, or TGF-beta2. Total RNA from each individual was pooled for each chip. Technical replicates were created for each treatment type, for a total of 6 chips. Keywords: dose response
Project description:To clarify the effects of dexamethasone treatment for primary trabecular meshwork cell gene expression, which may relates to the pathophysiology of glucocorticoid-induced glaucoma Three lots (lot #2584, 3423 and 4973) of primary culture human trabecular meshwork (TM) cells were purchased from ScienCell Research Laboratories (Carlsbad, CA). The TM cells were treated with and without 100nM dexamethasone (DEX) for 14 days. Genomewide gene expression analysis was carried out using Agilent 8X60K array.
Project description:Purpose: To investigate the changes in gene expression induced by cyclic mechanical stress (CMS) in trabecular meshwork (TM) cells.
Project description:Treatment with glucocorticoids is known to cause ocular hypertension in humans which can lead to steriod-induced glaucoma We used microarrays to determine changes in gene expression in two human trabecular meshwork (TM) cell isolates (TM-4 and TM-2) from the same donor that could explain the increase in ocular hypertension.
Project description:Glaucoma is a progressive optic neuropathy that can lead to irreversible blindness. Its main risk factor is elevated intraocular pressure (IOP). The trabecular meshwork (TM) acts as a filter between the anterior chamber of the eye and the aqueous humor collecting ducts, and dysfunction of this meshwork is responsible for the increased IOP in primary open-angle glaucoma (POAG). Considering that the culture conditions of human TM cells (HTMC) influence gene expression, we used human TM explants (HTMEx), which most closely mimic physiological conditions, to study the transcriptome of HTMC. The transforming growth factor-beta 2 (TGF-β2) signaling pathway has been implicated in the pathophysiology of POAG. To better characterize the role of TGF-β2 in this pathophysiology, we used bulk RNA sequencing and immunohistological analyses to establish gene signatures of TGF-β2-exposed HTMEx and correlate them with morphological alterations. We identified differentially upregulated genes primarily involved in ECM regulation, as well as profibrotic TGF-β signaling pathways, confirmed using confocal microscopy to highlight changes in trabecular architecture, TGFβ2-induced F-actin rearrangements, and extracellular matrix (ECM) deposition. Enrichment analysis also revealed modulations of gene expression related to cytoskeletal organization, as well as activation of the bone morphogenic protein (BMP) and Wnt signaling pathways in response to TGF-β2.