Project description:Under crowded, nutrient-limiting conditions, growth in the marine chordate O. dioica arrests until favorable conditions return. We profiled translation genome-wide using ribosome profiling in O. dioica during growth arrest and growth arrest recovery. We found that initial recovery is independent of nutrient-responsive, trans-spliced genes, suggesting that animal density is the primary trigger for the resumption of development in this species.
Project description:Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced leader (SL) RNA. The SL is also frequently trans-spliced to monocistronic transcripts. Using a modified cap analysis of gene expression (CAGE) protocol we mapped sites of SL trans-splicing genome-wide in the marine chordate Oikopleura dioica and find evidence for proposed functions of SL-trans-splicing. A recent hypothesis postulates that operons facilitate recovery from growth arrested states in metazoans. We examined the expression dynamics of operons across the life-cycle of the animal and during growth arrest recovery. We show that operons do not facilitate recovery from growth arrest in O. dioica. We find that operons are enriched in the germline and that trans-spliced transcripts are predominantly maternal., Interestingly, there is a TOP-like motif in the SL sequence, and trans-splicing in TOP mRNAs, indicating that trans-spliced mRNAs are targets for nutrient-dependent translational control in O. dioica.
Project description:Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced leader (SL) RNA. The SL is also frequently trans-spliced to monocistronic transcripts. Using a modified cap analysis of gene expression (CAGE) protocol we mapped sites of SL trans-splicing genome-wide in the marine chordate Oikopleura dioica and find evidence for proposed functions of SL-trans-splicing. A recent hypothesis postulates that operons facilitate recovery from growth arrested states in metazoans. We examined the expression dynamics of operons across the life-cycle of the animal and during growth arrest recovery. We show that operons do not facilitate recovery from growth arrest in O. dioica. We find that operons are enriched in the germline and that trans-spliced transcripts are predominantly maternal., Interestingly, there is a TOP-like motif in the SL sequence, and trans-splicing in TOP mRNAs, indicating that trans-spliced mRNAs are targets for nutrient-dependent translational control in O. dioica. Total RNA from a number of stages across development were pooled and used in a modified DeepCAGE protocol. A custom designed spliced-leader primer (using the SL exon) was used in the 2nd strand synthesis step.
Project description:The developmental transcriptomics of every significant developmental stage of O. dioica at ultra-high resolution. 18 samples were included, each in technical triplicate (and one with 4 replicates). These samples included 12 developmental time-point providing high-resolution interrogation of the complete animal life cycle. A further 3 samples specifically interrogated adult ovary, testis and somatic tissues. Finally, 3 samples were included that covered animal transcriptomics response under restrictive conditions that induce developmental growth arrest.
Project description:Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced leader (SL) RNA. The SL is also frequently trans-spliced to monocistronic transcripts. Using a modified cap analysis of gene expression (CAGE) protocol we mapped sites of SL trans-splicing genome-wide in the marine chordate Oikopleura dioica and find evidence for proposed functions of SL-trans-splicing. A recent hypothesis postulates that operons facilitate recovery from growth arrested states in metazoans. We examined the expression dynamics of operons across the life-cycle of the animal and during growth arrest recovery. We show that operons do not facilitate recovery from growth arrest in O. dioica. We find that operons are enriched in the germline and that trans-spliced transcripts are predominantly maternal., Interestingly, there is a TOP-like motif in the SL sequence, and trans-splicing in TOP mRNAs, indicating that trans-spliced mRNAs are targets for nutrient-dependent translational control in O. dioica. Whole animals were sampled from a growth arrested state as well as three time points after release from growth arrest: 0.5 hrs; 1.5 hrs and 4 hrs. Two biological replicates were performed for each time point and each of these was divided into three technical replicates.
Project description:Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced leader (SL) RNA. The SL is also frequently trans-spliced to monocistronic transcripts. Using a modified cap analysis of gene expression (CAGE) protocol we mapped sites of SL trans-splicing genome-wide in the marine chordate Oikopleura dioica and find evidence for proposed functions of SL-trans-splicing. A recent hypothesis postulates that operons facilitate recovery from growth arrested states in metazoans. We examined the expression dynamics of operons across the life-cycle of the animal and during growth arrest recovery. We show that operons do not facilitate recovery from growth arrest in O. dioica. We find that operons are enriched in the germline and that trans-spliced transcripts are predominantly maternal., Interestingly, there is a TOP-like motif in the SL sequence, and trans-splicing in TOP mRNAs, indicating that trans-spliced mRNAs are targets for nutrient-dependent translational control in O. dioica.