Project description:The association between soil microbes and plant roots is present in all natural and agricultural environments. Microbes can be beneficial, pathogenic, or neutral to the host plant development and adaptation to abiotic or biotic stresses. Progress in investigating the functions and changes in microbial communities in diverse environments have been rapidly developing in recent years, but the changes in root function is still largely understudied. The aim of this study was to determine how soil bacteria influence maize root transcription and microRNAs (miRNAs) populations in a controlled inoculation of known microbes over a defined time course. At each time point after inoculation of the maize inbred line B73 with ten bacterial isolates, DNA and RNA were isolated from roots. The V4 region of the 16S rRNA gene was amplified from the DNA and sequenced with the Illumina MiSeq platform. Amplicon sequencing of the 16S rRNA gene indicated that most of the microbes successfully colonized maize roots. The colonization was dynamic over time and varied with the specific bacterial isolate. Small RNA sequencing and mRNA-Seq was done to capture changes in the root transcriptome from 0.5 to 480 hours after inoculation. The transcriptome and small RNA analyses revealed epigenetic and transcriptional changes in roots due to the microbial inoculation. This research provides the foundational data needed to understand how plant roots interact with bacterial partners and will be used to develop predictive models for root response to bacteria.
Project description:Comparison of probe-target dissociations of probe Eub338 and Gam42a with native RNA of P. putida, in vitro transcribed 16s rRNA of P. putida, in vitro transcribed 16S rRNA of a 2,4,6-trinitrotoluene contaminated soil and an uncontaminated soil sample. Functional ANOVA revealed no significant differences in the dissociation curves of probe Eub338 when hybridised to the different samples. On the opposite, the dissociation curve of probe Gam42a with native RNA of P. putida was significantly different than the dissociation curves obtained with in vitro transcribed 16S rRNA samples. Keywords: Microbial diversity, thermal dissociation analysis, CodeLink microarray
Project description:In this study a comparison was made between the local transcriptional changes at two time points upon root knot (Meloidogyne graminicola) and migratory nematode (Hirschmanniella oryzae) infection in rice. Using mRNA-Seq we have characterized specific and general responses of the root challenged with these endoparastic root nematodes with very different modes of action. Root knot nematodes induce major developmental reprogramming of the root tip, where they force the cortical cells to form multinucleate giant cells, resulting in gall-development. Our results show that root knot nematodes force the plant to produce and transfer nutrients, like sugars and amino acids, to this tissue. Migratory nematodes, on the other hand, induce the expression of proteins involved in plant death and oxidative stress, and obstruct the normal metabolic activity of the root. While migratory nematode infection also causes upregulation of biotic stress-related genes early in the infection, the root knot nematodes seem to actively suppress the local defence of the plant root. This is exemplified by a downregulation of genes involved in the salicylic acid and ethylene pathways. Interestingly, hormone pathways usually involved in plant development, were strongly induced (auxin and gibberellin) or repressed (cytokinin) in the galls. In addition, thousands of novel transcriptionally active regions as well as highly expressed nematode transcripts were detected in the infected root tissues. These results uncover previously unrecognized nematode-specific expression profiles and provide an interesting starting point to study the physiological function of many yet unannotated transcripts potentially targeted by these nematodes.
Project description:During a compatible interaction, root-knot nematodes (Meloidogyne spp.) induce the redifferentiation of root cells into multinucleate nematode feeding cells giant cells. These hypertrophied cells result from repeated nuclear divisions without cytokinesis, are metabolically active and present features typical of transfer cells. Hyperplasia of the surrounding cells leads to formation of the typical root gall. We investigate here the plant response to root-knot nematodes.
Project description:In this study a comparison was made between the local transcriptional changes at two time points upon root knot (Meloidogyne graminicola) and migratory nematode (Hirschmanniella oryzae) infection in rice. Using mRNA-Seq we have characterized specific and general responses of the root challenged with these endoparastic root nematodes with very different modes of action. Root knot nematodes induce major developmental reprogramming of the root tip, where they force the cortical cells to form multinucleate giant cells, resulting in gall-development. Our results show that root knot nematodes force the plant to produce and transfer nutrients, like sugars and amino acids, to this tissue. Migratory nematodes, on the other hand, induce the expression of proteins involved in plant death and oxidative stress, and obstruct the normal metabolic activity of the root. While migratory nematode infection also causes upregulation of biotic stress-related genes early in the infection, the root knot nematodes seem to actively suppress the local defence of the plant root. This is exemplified by a downregulation of genes involved in the salicylic acid and ethylene pathways. Interestingly, hormone pathways usually involved in plant development, were strongly induced (auxin and gibberellin) or repressed (cytokinin) in the galls. In addition, thousands of novel transcriptionally active regions as well as highly expressed nematode transcripts were detected in the infected root tissues. These results uncover previously unrecognized nematode-specific expression profiles and provide an interesting starting point to study the physiological function of many yet unannotated transcripts potentially targeted by these nematodes. 2 or 3 biological replicates of nematode infected roots and root tips and their respective controls were sampled at two time points (1 biological replicate contains pooled tissue from 6 plants)
Project description:Because of severe abiotic limitations, Antarctic soils represent simplified ecosystems, where microorganisms are the principle drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report a number of highly consistent changes in microbial community structure and abundance across very disparate sub-Antarctic and Antarctic environments following three years of experimental field warming (+ 0.5-2°C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio. These alterations were linked to a significant increase in soil respiration. Furthermore, the shifts toward generalist or opportunistic bacterial communities following warming weakened the linkage between bacterial diversity and functional diversity. Warming also increased the abundance of some organisms related to the N-cycle, detected as an increase in the relative abundance of nitrogenase genes via GeoChip microarray analyses. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures, thereby potentially disrupting soil functioning.
Project description:Because of severe abiotic limitations, Antarctic soils represent simplified ecosystems, where microorganisms are the principle drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report a number of highly consistent changes in microbial community structure and abundance across very disparate sub-Antarctic and Antarctic environments following three years of experimental field warming (+ 0.5-2°C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio. These alterations were linked to a significant increase in soil respiration. Furthermore, the shifts toward generalist or opportunistic bacterial communities following warming weakened the linkage between bacterial diversity and functional diversity. Warming also increased the abundance of some organisms related to the N-cycle, detected as an increase in the relative abundance of nitrogenase genes via GeoChip microarray analyses. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures, thereby potentially disrupting soil functioning. We conducted in situ warming experiments for three years using open-top chambers (OTCs) at one sub-Antarctic (Falkland Islands, 52ºS) and two Antarctic locations (Signy and Anchorage Islands, 60ºS and 67ºS respectively) (see Supplementary Fig. 1 for a map). OTCs increased annual soil temperature by an average of 0.8°C (at a depth of 5 cm), resulting in 8-43% increase in positive-degree days annually and a decrease in freeze-thaw cycle frequency by an average of 15 cycles per year (8). At each location, we included densely vegetated and bare fell-field soils in the experimental design for a total of six environments. Densely vegetated and bare environments represent two contrasting environments for Antarctic soil microorganisms, with large differences in terms of C and N inputs to soils. Massively parallel pyrosequencing (Roche 454 GS FLX Titanium) of 16S rRNA gene amplicons was used to follow bacterial diversity and community composition [GenBank Accession Numbers: HM641909-HM744649], and functional gene microarrays (GeoChip 2.0)(11) were used to assess changes in functional gene distribution. Bacterial and fungal communities were also quantified using real-time PCR.
Project description:Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseasesas bacterial, fungal wilts and root-knot nematodes. A 30,0000 features custom combimatrix chip was designed and microarray hybridizations were conducted for both control and 14 dpi (day post inoculation) with Meloidogyne incognita-infected roots samples. We also tested the chip with samples from the phylogenetically-related nematode-susceptible eggplant species Solanum melongena.The genes identified from S. torvum catalogue, bearing high homology to knownnematode resistance genes, were further investigated in view of their potential role in the nematode resistance mechanism. total RNA was extracted from control and 14 days post-infection (infection with root-knot nematode Meloidogyne incognita) from roots of Solanum torvum and Solanum melongena. Three biological replicates were used for each condition and genotype for a total of 12 samples.
Project description:affy_pathogen_medicago - In compatible interaction between plants and biotrophic microorganisms, neoformation of organs occurs to ensure an efficient relationship between both partners. During the interaction between Medicago truncatula and Sinorhizobium meliloti, bacteria induce the development of root nodule with a permanent meristem, and chronically infect plant cells from zone II before differentiating into atmospheric nitrogen fixing bacteroids. M. truncatula is also plant host for root-knot nematodes, such as Meloidogyne incognita. During this compatible pathogenic interaction, root-knot nematodes induce redifferenciation of root cells from the vascular cylinder into specialized feeding cells called “giant cells”. Hyperplasia and hypertrophy of the surrounding cells lead to the formation of typical root galls. This phenomenon invokes host pathways in common with those necessary for nitrogen-nodule formation, suggesting that nematode and rhizobia exploit a relative common strategy of plant cell infection at the cellular and molecular levels. In order to highlight key genes involved in gall and nodule developments, parallel laser microdissection of giant cells from galls and cells from zone II of nodules, followed by transcriptomic analysis, were performed. The RNA pools were extracted from these cells, amplified and used for transcriptomic studies with M. truncatula Affymetrix DNA chips. Keywords: organ comparison 12 arrays - Medicago infected with M. incognita or S. meliloti.