Project description:Gene expression profiling was performed to compare RNA abundances in mycelium of Puf knockout strains compared to that in mycelium of wild-type N. crassa
Project description:The molecular mechanisms of aging are unsolved and fascinating fundamental biological questions. Caenorhabditis elegans is an ideal model organism for investigating aging. PUF-8, a PUF (Pumilio and FBF) protein in C. elegans, is crucial for germline development through binding to the 3’ untranslated regions (3’ UTR) in the mRNA of target genes. Recently, PUF-8 was reported to alter mitochondrial dynamics and mitophagy by regulating MFF, a mitochondrial fission factor, and subsequently regulate longevity. Here, we determined the crystal structure of the PUF domain of PUF-8 with an RNA substrate. Mutagenesis experiments were performed to alter PUF-8 recognition of its target mRNAs. We generate these mutations in C. elegans, those mutations reduced the fertility and extended the lifespan. We deep sequenced total mRNAs from wild-type and puf-8 mutant worms and conducted in vitro RNA pull-down experiments. Six PUF-8 regulated genes were identified, in which their mRNA 3’ UTRs contain at least one PUF-binding element (PBE). One of the six genes, pqm-1, is crucial for lipid storage and aging process. Knockdown of pqm-1 could revert the lifespan extension of puf-8(-) animals. Therefore, PUF-8 may regulate the lifespan of C. elegans via modulating pqm-1-related pathways
Project description:RNA-coimmunopurifications with TAP-tagged Puf proteins from Saccharomyces cereviseae. Untagged strain (BY4741) served as a control. Cells were grown to midlog phase and harvested by centrifugation. TAP-tagged Puf proteins were affinity purified from cell-free extracts with IgG sepharose and eluted with TEV protease. RNA was isolated from extract (=input)and from purified protein samples by phenol-chloroform extraction. RNA samples were reverse transcribed using a mixture of oligo-dT and random nonamer oligos in the presence of amino-allyl dUTP/ dNTP mixture. cDNAs were fluorescently labeled and hybridized on yeast DNA microarrays over night at 65 degrees. For a detailed procedure see http://microarray-pubs.stanford.edu/yeast_puf and also Gerber AP et al. PLoS Biology, 2004. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:RNA-coimmunopurifications with TAP-tagged Puf proteins from Saccharomyces cereviseae. Untagged strain (BY4741) served as a control. Cells were grown to midlog phase and harvested by centrifugation. TAP-tagged Puf proteins were affinity purified from cell-free extracts with IgG sepharose and eluted with TEV protease. RNA was isolated from extract (=input)and from purified protein samples by phenol-chloroform extraction. RNA samples were reverse transcribed using a mixture of oligo-dT and random nonamer oligos in the presence of amino-allyl dUTP/ dNTP mixture. cDNAs were fluorescently labeled and hybridized on yeast DNA microarrays over night at 65 degrees. For a detailed procedure see http://microarray-pubs.stanford.edu/yeast_puf and also Gerber AP et al. PLoS Biology, 2004. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computed
Project description:Transcriptional profiling with next-generation sequencing methods demonstrated that a Neurospora crassa mutant with the three most highly expressed beta-glucosidase genes deleted had a transcriptional response to cellobiose similair to that of wild type N. crassa exposed to cellulose.
Project description:RNA-coimmunopurifications with TAP-tagged Puf proteins from Saccharomyces cereviseae. Untagged strain (BY4741) served as a control. Cells were grown to midlog phase and harvested by centrifugation. TAP-tagged Puf proteins were affinity purified from cell-free extracts with IgG sepharose and eluted with TEV protease. RNA was isolated from extract (=input)and from purified protein samples by phenol-chloroform extraction. RNA samples were reverse transcribed using a mixture of oligo-dT and random nonamer oligos in the presence of amino-allyl dUTP/ dNTP mixture. cDNAs were fluorescently labeled and hybridized on yeast DNA microarrays over night at 65 degrees. For a detailed procedure see http://microarray-pubs.stanford.edu/yeast_puf and also Gerber AP et al. PLoS Biology, 2004.
Project description:The PUF family of RNA binding proteins has a conserved role in maintaining stem cell self-renewal. FBF is a C. elegans PUF that is required to maintain germline stem cells (GSCs). To understand how FBF controls GSCs, we sought to identify is target mRNAs. Briefly, we immunoprecipitated FBF-mRNA complexes from worm extracts and then used microarrays to identify the FBF-associated mRNAs. To focus on germline targets of FBF, we used a FBF-GFP transgene under the control of a germline promoter and we used an anti-GFP antibody to purify FBF-GFP from worm extracts. In parallel, we also processed a strain expressing TUBULIN-GFP in the germline to control for mRNAs that non-specifically co-purify with GFP. We found that FBF associates with >1,000 unique mRNAs and likely controls a broad network of key cellular and developmental regulators.