Project description:In F. graminearum, the transcriptional regulator TRI6 is encoded within the trichothecene gene cluster and regulates genes involved in the biosynthesis of the secondary metabolite deoxynivalenol (DON). Targeted disruption of TRI6 confirmed its role as a positive regulator of trichothecene genes and previous studies designated Tri6 as a pathway-specific transcriptional regulator. The Tri6 protein with its Cys2His2 zinc-finger may also conform to the class of broad-domain transcription regulators. This class of global transcriptional regulators mediate various environmental cues and generally responds to the demands of cellular metabolism. Expression profiling of F. graminearum grown under nitrogen-limiting conditions revealed that 49 out of 198 target genes are differentially regulated by TRI6. The identification of potential new targets together with deciphering novel binding site for Tri6, casts new light into the role of this transcriptional regulator in the overall growth and development of F. graminearum. Three biological replicates of Fusarium graminearum wildtype strain GZ3639 (NRRL 38155) (reference) and a tri6∆ mutant derived from GZ3639 were grown under nitrogen-limiting conditions in liquid culture for 5 hrs at 28oC
Project description:Identifying the role of two DNA methyltransferase enzymes in Fusarium graminearum isolate NRRL29169 by high-throughput mRNA sequencing under 2 environmental conditions.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. Conidiogenesis had been intensively studied in Aspergillus nidulans and regulatory pathway genes have been known to regulate conidiogenesis in stage specific manner. We reported the functional analyses of flbD, abaA, and wetA orthologs in F. graminearum. To understand genome-wide transcriptional profiling of conidiation, we employed RNA-seq of the wild-type Fusarium graminearum Z-3639 and each gene deletion mutants with three time courses (0 h, 6 h and 12 h after induction of conidiogenesis). AbaA experiment: 6 samples examined: 0 h, 6 h and 12 h after induction of conidiogenesis of Fusarium graminearum Z-3639 wild type and ΔabaA(ΔabaA::gen) mutant strains WetA experiment: 3 samples examined: 0 h, 6 h and 12 h after induction of conidiogenesis of Fusarium graminearum ΔwetA(ΔwetA::gen) mutant strains flbD experiment: 3 samples examined: 0 h, 6 h and 12 h after induction of conidiogenesis of Fusarium graminearum ΔflbD(ΔflbD::gen) mutant strains
Project description:The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect cellular responses toward heat stress in the plant pathogenic fungus F. graminearum, we compared transcriptomes of the fungal cultures incubated in normal temperature condition (25 ºC) and in high temperature condition (37 ºC) for 15 min. 6 samples examined: 24 h-old mycelia from complete medium (CM) of Fusarium graminearum wild-type Z-3639 were incubated in normal temperature condition (25 ºC) and in high temperature condition (37 ºC) for 15 min.
Project description:We report a complete transcriptomic study of Fusarium graminearum in response to glucose, cellulose, xylan and cell wall fragments with a whole genome microarray from febit. Fusarium graminearum was cultured at 25 °C on minimal M3 medium with glucose, birch wood xylan, carboxy methyl cellulose or hop cell wall as sole carbon source at a concentration of 10 g/L. Microarray experiments were achieved with a Geniom device (febit biomed, Germany). Each of the four tested condition was tested with two biological and two technical replicates.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. Fhs1 contains a Zn(II)2Cys6 fungal-type DNA-binding domain and localized to nuclei , suggesting that Fhs1 is a transcription factor required for hydroxiurea. 6 samples examined: 24 h after inoculation of Fusarium graminearum wild-type Z-3639 and fhs1 (Îfhs1::GEN) strains in complete media