Project description:Coxiella burnetii undergoes a biphasic developmental cycle within its host cell that generates morphologically and physiologically distinct large cell variants (LCV) and small cell variants (SCV). During the lag phase of the C. burnetii growth cycle, non-replicating SCV differentiate into replicating LCV that in turn differentiate back into SCV during stationary phase. Nearly homogeneous SCV are observed in infected Vero cells after extended incubation (21 to 28 days). In the current study, we sought to establish whether C. burnetii developmental transitions in host cells are recapitulated during host cell-free (axenic) growth in first and second generation acidified citrate cysteine media (ACCM-1 and ACCM-2, respectively). We show that ACCM-2 supported developmental transitions and viability. Although ACCM-1 also supported SCV to LCV transition, LCV to SCV transition did not occur after extended incubation (21 days). Instead, C. burnetii exhibited a ghost-like appearance with bacteria containing condensed chromatin but otherwise devoid of cytoplasmic content. This phenotype correlated with a near total loss in viability between 14 and 21 days of cultivation. Transcriptional profiling of C. burnetii following 14 days of incubation revealed elevated expression of oxidative stress genes in ACCM-1 cultivated bacteria. ACCM-2 differs from ACCM-1 by the substitution of methyl-b-cyclodextrin (Mb-CD) for fetal bovine serum. Addition of Mb-CD to ACCM-1 at 7 days post-inoculation rescued C. burnetii viability and lowered expression of oxidative stress genes. Thus, Mb-CD appears to alleviate oxidative stress in ACCM-2 to result in C. burnetii developmental transitions and viability that mimic host cell-cultivated organisms. Axenic cultivation of C. burnetii in ACCM-2 and new methods Coxiella axenic media 1 vs 2
Project description:The inability to propagate obligate intracellular pathogens under axenic (host cell-free) culture conditions imposes severe experimental constraints that have negatively impacted progress in understanding pathogen virulence and disease mechanisms. Coxiella burnetii, the causative agent of human Q (Query) fever, is an obligate intracellular bacterial pathogen that replicates exclusively in an acidified, lysosome-like vacuole. To define conditions that support C. burnetii growth, we systematically evaluated the organism’s metabolic requirements using expression microarrays, genomic reconstruction, and metabolite typing. This led to development of a complex nutrient medium that supported substantial growth (~ 3 log10) of C. burnetii in a 2.5% oxygen environment. Importantly, axenically grown C. burnetii were highly infectious for Vero cells and exhibited developmental forms characteristic of in vivo grown organisms. Axenic cultivation of C. burnetii will facilitate studies of the organism’s pathogenesis and genetics, and aid development of Q fever preventatives such as an effective subunit vaccine. Furthermore, the systematic approach used here may be broadly applicable to development of axenic media that support growth of other medically important obligate intracellular pathogens.
Project description:Coxiella burnetii undergoes a biphasic developmental cycle within its host cell that generates morphologically and physiologically distinct large cell variants (LCV) and small cell variants (SCV). During the lag phase of the C. burnetii growth cycle, non-replicating SCV differentiate into replicating LCV that in turn differentiate back into SCV during stationary phase. Nearly homogeneous SCV are observed in infected Vero cells after extended incubation (21 to 28 days). In the current study, we sought to establish whether C. burnetii developmental transitions in host cells are recapitulated during host cell-free (axenic) growth in first and second generation acidified citrate cysteine media (ACCM-1 and ACCM-2, respectively). We show that ACCM-2 supported developmental transitions and viability. Although ACCM-1 also supported SCV to LCV transition, LCV to SCV transition did not occur after extended incubation (21 days). Instead, C. burnetii exhibited a ghost-like appearance with bacteria containing condensed chromatin but otherwise devoid of cytoplasmic content. This phenotype correlated with a near total loss in viability between 14 and 21 days of cultivation. Transcriptional profiling of C. burnetii following 14 days of incubation revealed elevated expression of oxidative stress genes in ACCM-1 cultivated bacteria. ACCM-2 differs from ACCM-1 by the substitution of methyl-b-cyclodextrin (Mb-CD) for fetal bovine serum. Addition of Mb-CD to ACCM-1 at 7 days post-inoculation rescued C. burnetii viability and lowered expression of oxidative stress genes. Thus, Mb-CD appears to alleviate oxidative stress in ACCM-2 to result in C. burnetii developmental transitions and viability that mimic host cell-cultivated organisms. Axenic cultivation of C. burnetii in ACCM-2 and new methods
Project description:The inability to propagate obligate intracellular pathogens under axenic (host cell-free) culture conditions imposes severe experimental constraints that have negatively impacted progress in understanding pathogen virulence and disease mechanisms. Coxiella burnetii, the causative agent of human Q (Query) fever, is an obligate intracellular bacterial pathogen that replicates exclusively in an acidified, lysosome-like vacuole. To define conditions that support C. burnetii growth, we systematically evaluated the organismâ??s metabolic requirements using expression microarrays, genomic reconstruction, and metabolite typing. This led to development of a complex nutrient medium that supported substantial growth (~ 3 log10) of C. burnetii in a 2.5% oxygen environment. Importantly, axenically grown C. burnetii were highly infectious for Vero cells and exhibited developmental forms characteristic of in vivo grown organisms. Axenic cultivation of C. burnetii will facilitate studies of the organismâ??s pathogenesis and genetics, and aid development of Q fever preventatives such as an effective subunit vaccine. Furthermore, the systematic approach used here may be broadly applicable to development of axenic media that support growth of other medically important obligate intracellular pathogens. Host cell-free growth, Vero cell growth and carryover baseline of Coxiella burnetii
Project description:Transcriptional profiling of Coxiella burnetii phase I (RSA 493) submitting either to Cold and Heat shock comparing to control untreated Coxiella burnetii phase I (RSA 493) grown at 35°C.
Project description:A comparison was made between the THP-1(Human monocytic leukemia cells - TIB-202; ATCC) transcriptional responses of; (i) uninfected versus Coxiella burnetii NMII infected and (ii) uninfected versus Coxiella burnetii NMII infected THP-1 cells transiently treated with bacteriostatic levels (10μg/ml) of chloramphenicol (CAM). Briefly, infections were initiated and cultured in parallel with uninfected cells. At 48 hours post infection (hpi), media containing CAM (10μg/ml) was added to one set of cells (uninfected and infected THP-1 cells) and culturing was continued. The other set of cells were mock treated with normal media. Total RNA was isolated at 72 hpi from all conditions. Microarrays were performed for both condition sets and the results from each of the two microarrays were compared to define the host genes modulated by de novo C. burnetii NMII protein synthesis.
Project description:Transcriptional profiling of Coxiella burnetii phase I (RSA 493) submitting either to Cold and Heat shock comparing to control untreated Coxiella burnetii phase I (RSA 493) grown at 35°C. Four experiments : Cold shock 30 min Vs 35°C; Cold shock 60 min Vs 35°C; Heat shock 30 min Vs 35°C; Heat shock 60 min Vs 35°C 3 biological replicates, independently grown and harvested. Four replicate per array.
Project description:Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from replicating (exponential phase) large cell variant (LCV) forms to a non-replicating, (stationary phase) small cell variant (SCV) forms. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary phase growth in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to C. burnetii. To characterize RpoS function during C. burnetii growth and developmental, we constructed a C. burnetii ∆rpoS mutant to define the effects on intracellular and axenic growth, as well as, gene regulation during SCV development. C. burnetii ∆rpoS exhibited intracellular growth defects in J774 mouse macrophage-like cells, but not in Vero epithelial cells. RNA sequencing of C. burnetii ∆rpoS revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Genes previously shown to have increased expression during SCV generation, including the expression of the SCV-specific protein ScvA and pathways involved in oxidative stress, arginine transport, and peptidoglycan remodeling pathways, were dysregulated in the rpoS mutant. These genes were enriched for a predicted RpoS-binding site. These data were corroborated with independent assays demonstrating that the C. burnetii rpoS mutant had increased sensitivity to hydrogen peroxide and carbenicillin. Collectively, these results demonstrate that RpoS is essential for the regulation of genes involved in SCV development and growth inside macrophage-like cells.
Project description:Coxiella burnetii, a category B select agent, is endemic worldwide, except New Zealand. It causes annually several outbreaks of the zoonotic disease Q fever predominantly in small ruminants. To date, the lipopolysaccharide (LPS), besides a type IV secretion system (T4SS), is the only defined and characterized virulence determinant of C. burnetii. This surface molecule is used to distinguish between virulent (Ph I) and low-virulent (Ph II) organisms, the latter emerge only after frequent passaging in the laboratory. As an obligate intracellular pathogen, targeted genetic modification is still not a routine and labour intensive procedure. The deeper study of novel determinants is complicated and demands not only advanced techniques for axenic and for cell culture-based cultivation but also novel approaches in the high-resolution mass spectrometry. This work is the first proteomic study comparing. C. burnetii Ph I and Ph II propagated in different axenic media and in cell culture.