Project description:Allergy is one of the most prevalent chronic diseases, affecting hundreds of millions of people worldwide. In allergy, environmental allergens induce B cells to undergo class switch recombination and produce Immunoglobulin E (IgE) antibodies. IgE is a key molecule that mediates allergic responses by coating mast cell or basophil surfaces and inducing degranulation upon binding a specific allergen. IgE can also be spontaneously produced in the absence of exogenous allergens, yet the origin, regulation, and functions of such “natural” IgE still remains largely unknown. Here, we discovered that glucocorticoids, which are steroid stress hormones, enhance IgE isotype class switching in B cells both in vivo and ex vivo without antigenic challenge. Such IgE class switching is promoted by B cell-intrinsic glucocorticoid receptor signaling that reinforces CD40 signaling and synergizes with the IL-4/STAT6 pathway. In addition, we found that rare B cells in the mesenteric lymph nodes are responsible for the production of glucocorticoid-inducible IgE. Furthermore, we showed that locally produced glucocorticoids in the gut may induce natural IgE during perturbations of gut homeostasis such as dysbiosis. Notably, mice preemptively treated with glucocorticoids were protected from subsequent IgE-mediated pathogenic anaphylaxis in vivo. Together, our results suggest that glucocorticoids, classically considered to be broadly immunosuppressive, have a selective immunostimulatory role in B cells.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE cells in these memory responses is particularly unclear. IgE B-cell differentiation is characterized by a transient GC phase, a bias towards the plasma cell (PC) fate, and dependence on sequential switching for the production of high-affinity IgE. We show here that IgE GC B cells are unfit to undergo the conventional GC differentiation program due to impaired B-cell receptor function and increased apoptosis. IgE GC cells fail to populate the GC light zone and are unable to contribute to the memory and long-lived PC compartments. Furthermore, we demonstrate that direct and sequential switching are linked to distinct B-cell differentiation fates: direct switching generates IgE GC cells, whereas sequential switching gives rise to IgE plasma cells. We propose a comprehensive model for the generation and memory of IgE responses.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE cells in these memory responses is particularly unclear. IgE B-cell differentiation is characterized by a transient GC phase, a bias towards the plasma cell (PC) fate, and dependence on sequential switching for the production of high-affinity IgE. We show here that IgE GC B cells are unfit to undergo the conventional GC differentiation program due to impaired B-cell receptor function and increased apoptosis. IgE GC cells fail to populate the GC light zone and are unable to contribute to the memory and long-lived PC compartments. Furthermore, we demonstrate that direct and sequential switching are linked to distinct B-cell differentiation fates: direct switching generates IgE GC cells, whereas sequential switching gives rise to IgE plasma cells. We propose a comprehensive model for the generation and memory of IgE responses. The purpose of this analysis was to: 1) identify expression differences between IgE and IgG1 B lymphocytes, 2) identify GC Dark Zone (DZ) and Light Zone (LZ) signatures of IgG1 GC cells. For that purpose, we compared in one experiment the gene expression patterns of IgE germinal center (GC) cells, IgG1 GC cells, IgE plasma cells (PC), IgG1 PC and naïve cells. In a second experiment, we compared the expression of IgG1 DZ GC cells with that of IgG1 LZ GC cells. Triplicates obtained from independent sorting experiments were used for all samples except two (IgG1 PC=2 samples; IgE PC=4 samples). Each sample was obtained from a pool of three individual mice. The mice used in the experiment were CeGFP BALB/c mice infected with the parasite N. brasiliensis. CeGFP mice carry an IRES-GFP KI cassette in the 3'UTR of membrane IgE. In these mice, GFP expression marks IgE cells, and a population of IgG1 cells with a rearrangement to Cepsilon in the non-productive (VDJ negative) IgH chromosome.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.