Project description:Little is known about plant pathogenic response to parasitic plants, although some parasitic plants affect crop production in certain areas. To study this, we chose Glycine max as the model host plant and investigated changes in expression patterns after parasitization by Cuscuta using microarrays. Transcriptional change of Glycine max stem with and without Cuscuta at 2 different stages were compared
Project description:Little is known about plant pathogenic response to parasitic plants, although some parasitic plants affect crop production in certain areas. To study this, we chose Glycine max as the model host plant and investigated changes in expression patterns after parasitization by Cuscuta using microarrays.
Project description:Plant lodging severely reduced crop yield and quality. Different plant growth regulators (PGRs) have been applied to improve lodging resistance through the regulation of physiological changes, especially on the increase of stem thickness and strength. Melatonin is a pleiotropic PGR for the regulation of plant growth and development. In this study, we demonstrated that the exogenous treatment of melatonin to Glycine max significantly enhanced plant lateral growth by increasing stem diameter. In addition to the stem thickness, secondary cell wall (SCW) deposition acts as another critical factor for stem rigidity for lodging resistance. To understand whether exogenous treatment of melatonin would regulate SCW biosynthesis genes, we performed transcriptomic analyses on the stems of Glycine max with or without melatonin treatment. Through the differentially-expressed-genes (DEGs) analyses, many SCW biosynthesis genes were found to be regulated by melatonin, including the cellulose, hemicellulose and lignin biosynthesis enzymes. We also found that the two known master regulators, NAC and MYB, of SCW biosynthesis genes were induced under melatonin treatment, which further supported our observation on the differential expression of SCW biosynthesis genes. Our study highlighted the improvement of lodging resistance by the exogenous treatment of melatonin through the increase of plant stem thickness and the regulation of SCW biosynthesis genes and their upstream TFs in Glycine max.
Project description:Cytosine methylation is a base modification that is often used by genomes to store information that is stably inherited through mitotic cell divisions. Most cytosine DNA methylation is stable throughout different cell types or by exposure to different environmental conditions in plant genomes. Here, we profile the epigenomes of ~100 Glycine max lines to explore the extent of natural epigenomic variation. We also use these data to determine the extent to which DNA methylation variants are linked to genetic variations.
Project description:Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the worldâs most important legume crop and is sensitive to O3. Current ground-level O3 are estimated to reduce global soybean yields by 6% to 16%. In order to understand transcriptional mechanisms of yield loss in soybean, we examined the transcriptome of soybean flower and pod tissues exposed to elevated O3 using RNA-Sequencing.
Project description:This SuperSeries is composed of the following subset Series: GSE26195: Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max [Populus] GSE26197: Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max [Arabidopsis] GSE26198: Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max [Soy] Refer to individual Series