Project description:MicroRNAs (miRNAs) are non-coding molecules involved in post-transcriptional gene regulation that have been shown to modulate tumor cell proliferation and apoptosis and to act as oncogenes or tumor-suppressor genes. Although miRNAs have been linked to tumor progression, the connection between tumor-mediated immune modulation and miRNAs has yet to be explored. Specifically, how the miRNA dysregulation affects the monocyte-derived glioblastoma-infiltrating macrophages, the most abundant immune cell population within the glioblastoma microenvironment, and their immune suppressive properties has not been evaluated to date. Here we managed to purify the glioblastoma-infiltrating macrophages from the tumor microenvironment and compared their miRNA expression profile with the matched peripheral monocytes from the peripheral blood of the same GBM patient as well as with healthy donors. Of note, several most down-regulated miRNA candidates revealed in this study, including miR-142-3p, were also known for their role in mediating tumor-associated immunosuppression. These results suggest a novel approach to identify miRNA immune therapeutics using a two-step process: 1) screen miRNA expression from tumor-associated immune cells relative to normal immune cell, and 2) select and prioritize potential candidates on the basis of binding to immunosuppressive pathways or mechanisms. In the study presented here, 12 samples, including peripheral monocyte samples from 4 healthy donors, peripheral monocytes from 4 GBM patients and matched tumor-infiltrating macrophages extracted from the glioblastoma microenvironment, were used to acquire the miRNA expression profiles of 1732 unique mature miRNA sequences via the Phalanx Human miRNA OneArray Microarray v3 Platform.
Project description:We compared gene expression profile between healthy-donor peripheral monocytes and glioblastoma-patient peripheral monocytes as well as glioblastoma-patient peripheral monocytes with matched tumor-infiltrating myeloid cells.
Project description:MicroRNAs (miRNAs) are non-coding molecules involved in post-transcriptional gene regulation that have been shown to modulate tumor cell proliferation and apoptosis and to act as oncogenes or tumor-suppressor genes. Although miRNAs have been linked to tumor progression, the connection between tumor-mediated immune modulation and miRNAs has yet to be explored. Specifically, how the miRNA dysregulation affects the monocyte-derived glioblastoma-infiltrating macrophages, the most abundant immune cell population within the glioblastoma microenvironment, and their immune suppressive properties has not been evaluated to date. Here we managed to purify the glioblastoma-infiltrating macrophages from the tumor microenvironment and compared their miRNA expression profile with the matched peripheral monocytes from the peripheral blood of the same GBM patient as well as with healthy donors. Of note, several most down-regulated miRNA candidates revealed in this study, including miR-142-3p, were also known for their role in mediating tumor-associated immunosuppression. These results suggest a novel approach to identify miRNA immune therapeutics using a two-step process: 1) screen miRNA expression from tumor-associated immune cells relative to normal immune cell, and 2) select and prioritize potential candidates on the basis of binding to immunosuppressive pathways or mechanisms.
Project description:Differential profiles from whole genome human expression arrays on monocytes obtained from peripheral blood in COPD was studied and compared with controls. Monocytes were isolated from Controls (Group 1) which included Control Smokers (Group 1A) and Control Never Smokers (Group 1B) and COPD (Group 2) which included COPD Smokers (Group 2A) and COPD ExSmokers (Group 2B). Differential transcriptomic expression associated with (i) Smoking, (ii) COPD, and (iii) cessation of smoking were identified.
Project description:As part of our study in understanding the role of SP140 in inflammatory pathways in macrophages, we inhibited SP140 mRNA using siRNA. Peripheral blood mononuclear cells (PBMCs) were obtained from whole blood of healthy donors (from Sanquin Institute Amsterdam or from GSK Stevenage Blood Donation Unit) by Ficoll density gradient (Invitrogen). CD14+ monocytes were positively selected from PBMCs using CD14 Microbeads according to the manufacturer’s instructions (Miltenyi Biotec). CD14+ cells were differentiated with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) (R&D systems) for 3 days followed by 3 days of polarization into classically activated (inflammatory) M1 macrophages (100 ng/mL IFN-γ; R&D systems). M1 macrophages were transfected with siGENOME human smartpool SP140 siRNA or non-targeting scrambled siRNA for 48h with DharmaFECT™ transfection reagents according to manufacturer’s protocol (Dharmacon). The cells were left unstimulated or stimulated with 100 ng/mL LPS (E. coli 0111:B4; Sigma) for 4h (for qPCR) or 24h (for Elisa). The cells were lysed (ISOLATE II RNA Lysis Buffer RLY-Bioline) for RNA extraction.150 ng total RNA was labelled using the cRNA labelling kit for Illumina BeadArrays (Ambion) and hybridized with Ref8v3 BeadArrays (Illumina). Arrays were scanned on a BeadArray 500GX scanner and data were normalized using quantile normalization with background subtraction (GenomeStudio software; Illumina). This submission only contains processed data
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes