Project description:In the context of male reproductive health, epidemiological studies have observed reduced testis size and abnormal sperm counts and morphology in adult men exposed in utero, although these findings are not always repeated. The ambiguity of these reports is confounded by a lack of controlled animal studies investigating the effects of maternal cigarette smoke exposure on male offspring reproductive health. In this study we examined the effects of cigarette induced reproductive toxicity on male offspring exposed during the gestational and weaning period using our novel direct nasal exposure mouse model of cigarette smoke-induced chronic obstructive pulmonary disease and female subfertility. This was done too gain a better understanding of the adverse effects of gestational maternal smoking on male offspring fertility.
Project description:In the context of male reproductive health, epidemiological studies have observed reduced testis size and abnormal sperm counts and morphology in adult men exposed in utero, although these findings are not always repeated. The ambiguity of these reports is confounded by a lack of controlled animal studies investigating the effects of maternal cigarette smoke exposure on male offspring reproductive health. In this study we examined the effects of cigarette induced reproductive toxicity on male offspring exposed during the gestational and weaning period using our novel direct nasal exposure mouse model of cigarette smoke-induced chronic obstructive pulmonary disease and female subfertility. This was done too gain a better understanding of the adverse effects of gestational maternal smoking on male offspring fertility. C57BL/6 5 week-old female mice were exposed via the nose-only to cigarette smoke [twelve 3R4F reference cigarettes (University of Kentucky, USA) twice/day, five times per week, for 12-18 weeks]. Each exposure lasted 60 minutes. Control mice received room air. In total, 27 mice underwent cigarette smoke exposure. Eleven week-old female mice exposed to cigarette smoke for 6 weeks were separated into groups of three and housed with a single control stud male aged 7-8 weeks with proven fertility for a maximum of 12 weeks. Females were monitored every second day for post-coital plugs and pregnancy. Pregnant females were separated into single cages and litter sizes/pup weights recorded. Smoke exposure via dams continued throughout mating/pregnancy/lactation until weaning of pups at 21days post birth. The testis of exposed offspring were then collected for RNA extraction and hybridization on an Illumina Sentrix Mouse ref-8 v2 Beadchip
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Introduction: Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. Methods: In a house dust mite (HDM) model of allergic airway disease, we measured airway hyperresponsiveness (AHR) and airway inflammation between mice exposed prenatally to cigarette smoke (CS) or filtered air (FA). DNA methylation and gene expression were then measured in lung tissue. Results: We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3) are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Conclusions: Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease, however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease. Lung DNA methylation profiles of mice exposed in utero to cigarette smoke (CS) then treated with house dust mite (HDM, n = 8) or saline (n = 6), or exposed in utero to filtered air (FA) then treated with HDM (n = 9) or saline (n = 6)
Project description:Single-nucleus RNA sequencing (snRNA-seq) was used to profile the transcriptome of 5,264 nuclei in mouse adult testis. This dataset includes two samples from two different individuals. This dataset is part of a larger evolutionary study of adult testis at the single-nucleus level (97,521 single-nuclei in total) across mammals including 10 representatives of the three main mammalian lineages: human, chimpanzee, bonobo, gorilla, gibbon, rhesus macaque, marmoset, mouse (placental mammals); grey short-tailed opossum (marsupials); and platypus (egg-laying monotremes). Corresponding data were generated for a bird (red junglefowl, the progenitor of domestic chicken), to be used as an evolutionary outgroup.
Project description:Proteasome dysfunction is emerging as a novel pathomechanism for the development of chronic obstructive pulmonary disease (COPD), a major leading cause of death in the world. Cigarette smoke is one of the main risk factors for COPD and has been shown to impair proteasome function in vitro and in vivo. Importantly, proteasome activity is inhibited in COPD lungs while expression levels of proteasome subunits are not altered. In the present study, we dissected the molecular changes induced by cigarette smoke on proteasome function in lung epithelial cells and mouse lungs. We analyzed the integrity, composition, and the interactome of isolated 26S proteasome complexes from smoke-exposed cells and mouse lungs. Moreover, we applied native MS analysis to investigate whether reactive compounds of cigarette smoke directly modify and inhibit the 20S proteasome complex. Our data reveal that the 20S proteasome is slightly destabilized in the absence of any dominant modification of proteasomal proteins. 26S pulldown and stoichiometry analysis indicated that 26S proteasome complexes become instable in response to cigarette smoke exposure. Of note, the interactome of the 26S was clearly altered in smoke-exposed mouse lungs possibly reflecting an altered cellular composition in the lungs of the smoke-exposed mice. Taken together, our results suggest that cigarette smoke induces minor but detectable changes in the stability and interactome of 20S and 26S proteasome complexes which might contribute in a chronic setting to imbalanced proteostasis as observed in chronic lung diseases associated with cigarette smoking.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility. Gene expression was measured in whole testis from males aged 62-86 days. Samples include 190 first generation lab-bred male offspring of wild-caught mice from the Mus musculus musculus - M. m. domesticus hybrid zone.