Project description:Mycobacterium tuberculosis (MTB) is a species of pathogenic bacteria and the causative agent of tuberculosis. The type strain H37Rv has been sequenced in 1998, while many previous studies found its predicted genes exhibit frequent errors, particularly in start codons. Here, we applied a TMPP [(N-Succinimidyloxycarbonylmethyl) tris (2,4,6-trimethoxyphenyl) phosphonium bromide] labeling combined with StageTip separating strategy to characterize the N-terminal peptides. We identified 2,598 annotated proteins, which 1,078 proteins were labeled by TMPP.
Project description:Mycobacterium tuberculosis, the causative agent of tuberculosis accounts for 1.5 million annual deaths worldwide. The two well-characterized strains of the parental H37 strain namely, H37Ra and H37Rv show different pathogenic phenotypes. In order to identify factors that are responsible for virulence, we compared the proteome and the phosphoproteome profiles of virulent (H37Rv) and virulence attenuated (H37Ra) strains of M. tuberculosis. Quantitative proteomic analysis resulted in the identification and quantitation of 2,709 proteins and 505 phosphosites. Comparative analysis revealed over 5-fold overexpression of several proteins associated with virulence. Our data indicates that there are definable molecular differences between H37Rv and H37Ra strains at both the proteome and phosphoproteome levels which may explain the virulence and phenotypic differences.
Project description:Diverse chemical modifications fine-tune the function and metabolism of tRNA. Although tRNA modification is universal in all kingdoms of life, profiles of modifications, their functions, and physiological roles have not been elucidated in most organisms including the human pathogen, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To identify physiologically important modifications, we surveyed the tRNA of Mtb, using tRNA sequencing (tRNA-seq). Reverse transcription-derived error signatures in tRNA-seq predicted the sites and presence of 9 modifications. Several chemical treatments prior to tRNA-seq expanded the number of predictable modifications. Deletion of Mtb genes encoding two modifying enzymes, TruB and MnmA, eliminated their respective tRNA modifications, validating the presence of modified sites in tRNA species.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Linezolid treated strains. Goal was to determine the effects of Linezolid against Mycobacterium tuberculosis H37Rv strains.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Lupulone treated strains. Goal was to determine the effects of Lupulone against Mycobacterium tuberculosis H37Rv strains.