Project description:Loss of muscle proteins and the consequent weakness has important clinical consequences in diseases such as cancer, diabetes, chronic heart failure and in ageing. In fact, excessive proteolysis causes cachexia, accelerates disease progression and worsens life expectancy. Muscle atrophy involves a common pattern of transcriptional changes in a small subset of genes named atrophy-related genes or atrogenes. Whether microRNAs play a role in the atrophy program and muscle loss is debated. To understand the involvement of miRNAs in atrophy we performed miRNA expression profiling of mouse muscles under wasting conditions such as fasting, denervation, diabetes and cancer cachexia. We found that the miRNA signature is peculiar of each catabolic condition. We then focused on denervation and we revealed that changes in transcripts and microRNAs expression did not occur simultaneously but were shifted. Indeed, while the transcriptional control of the atrophy-related genes peaks at 3 days, the changes of miRNA expression maximised at 7 days after denervation. Among the different miRNAs, microRNA-206 and 21 were the most induced in denervated muscles. We characterized their pattern of expression and defined their role in muscle homeostasis. Indeed, in vivo gain and loss of function experiments revealed that miRNA-206 and miRNA-21 were sufficient and required for atrophy program. In silico and in vivo approaches identified the transcription factor YY1 and the translational initiator factor eIF4E3 as downstream targets of these miRNAs. Thus miRNAs are important for the fine-tuning of the atrophy program and their modulation can be a novel potential therapeutic approach to counteract muscle loss and weakness in catabolic conditions. To determine which miRNAs are relevant for the atrophic process, we performed miRNA expression profiles of muscles from different atrophic models (starvation, denervation and streptozotocin-induced diabetes). We checked whether there was a common signature of miRNA expression in different atrophying conditions and we found that every catabolic situation require a peculiar pattern of miRNA. We further focus on the condition of denervation and identified the most up-regulated miRNAs in this condition, miRNA-206 and miRNA-21.
Project description:Loss of muscle proteins and the consequent weakness has important clinical consequences in diseases such as cancer, diabetes, chronic heart failure and in ageing. In fact, excessive proteolysis causes cachexia, accelerates disease progression and worsens life expectancy. Muscle atrophy involves a common pattern of transcriptional changes in a small subset of genes named atrophy-related genes or atrogenes. Whether microRNAs play a role in the atrophy program and muscle loss is debated. To understand the involvement of miRNAs in atrophy we performed miRNA expression profiling of mouse muscles under wasting conditions such as fasting, denervation, diabetes and cancer cachexia. We found that the miRNA signature is peculiar of each catabolic condition. We then focused on denervation and we revealed that changes in transcripts and microRNAs expression did not occur simultaneously but were shifted. Indeed, while the transcriptional control of the atrophy-related genes peaks at 3 days, the changes of miRNA expression maximised at 7 days after denervation. Among the different miRNAs, microRNA-206 and 21 were the most induced in denervated muscles. We characterized their pattern of expression and defined their role in muscle homeostasis. Indeed, in vivo gain and loss of function experiments revealed that miRNA-206 and miRNA-21 were sufficient and required for atrophy program. In silico and in vivo approaches identified the transcription factor YY1 and the translational initiator factor eIF4E3 as downstream targets of these miRNAs. Thus miRNAs are important for the fine-tuning of the atrophy program and their modulation can be a novel potential therapeutic approach to counteract muscle loss and weakness in catabolic conditions.
Project description:Loss of muscle proteins and the consequent weakness has important clinical consequences in diseases such as cancer, diabetes, chronic heart failure and in ageing. In fact, excessive proteolysis causes cachexia, accelerates disease progression and worsens life expectancy. Muscle atrophy involves a common pattern of transcriptional changes in a small subset of genes named atrophy-related genes or atrogenes. Whether microRNAs play a role in the atrophy program and muscle loss is debated. To understand the involvement of miRNAs in atrophy we performed miRNA expression profiling of mouse muscles under wasting conditions such as fasting, denervation, diabetes and cancer cachexia. We found that the miRNA signature is peculiar of each catabolic condition. We then focused on denervation and we revealed that changes in transcripts and microRNAs expression did not occur simultaneously but were shifted. Indeed, while the transcriptional control of the atrophy-related genes peaks at 3 days, the changes of miRNA expression maximised at 7 days after denervation. Among the different miRNAs, microRNA-206 and 21 were the most induced in denervated muscles. We characterized their pattern of expression and defined their role in muscle homeostasis. Indeed, in vivo gain and loss of function experiments revealed that miRNA-206 and miRNA-21 were sufficient and required for atrophy program. In silico and in vivo approaches identified the transcription factor YY1 and the translational initiator factor eIF4E3 as downstream targets of these miRNAs. Thus miRNAs are important for the fine-tuning of the atrophy program and their modulation can be a novel potential therapeutic approach to counteract muscle loss and weakness in catabolic conditions.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Proctor2017 - Identifying microRNA for muscle regeneration during ageing (Mir1_in_muscle)
This model is described in the article:
Using computer simulation
models to investigate the most promising microRNAs to improve
muscle regeneration during ageing
Carole J. Proctor & Katarzyna
Goljanek-Whysall
Nature Scientific Reports
Abstract:
MicroRNAs (miRNAs) regulate gene expression through
interactions with target sites within mRNAs, leading to
enhanced degradation of the mRNA or inhibition of translation.
Skeletal muscle expresses many different miRNAs with important
roles in adulthood myogenesis (regeneration) and myofibre
hypertrophy and atrophy, processes associated with muscle
ageing. However, the large number of miRNAs and their targets
mean that a complex network of pathways exists, making it
difficult to predict the effect of selected miRNAs on
age-related muscle wasting. Computational modelling has the
potential to aid this process as it is possible to combine
models of individual miRNA:target interactions to form an
integrated network. As yet, no models of these interactions in
muscle exist. We created the first model of miRNA:target
interactions in myogenesis based on experimental evidence of
individual miRNAs which were next validated and used to make
testable predictions. Our model confirms that miRNAs regulate
key interactions during myogenesis and can act by promoting the
switch between quiescent/proliferating/differentiating
myoblasts and by maintaining the differentiation process. We
propose that a threshold level of miR-1 acts in the initial
switch to differentiation, with miR-181 keeping the switch on
and miR-378 maintaining the differentiation and miR-143
inhibiting myogenesis.
This model is hosted on
BioModels Database
and identified by:
MODEL1704110000.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Proctor2017 - Identifying microRNA for muscle
regeneration during ageing (Mir181_in_muscle)
This model is described in the article:
Using computer simulation
models to investigate the most promising microRNAs to improve
muscle regeneration during ageing
Carole J. Proctor & Katarzyna
Goljanek-Whysall
Scientific Reports
Abstract:
MicroRNAs (miRNAs) regulate gene expression through
interactions with target sites within mRNAs, leading to
enhanced degradation of the mRNA or inhibition of translation.
Skeletal muscle expresses many different miRNAs with important
roles in adulthood myogenesis (regeneration) and myofibre
hypertrophy and atrophy, processes associated with muscle
ageing. However, the large number of miRNAs and their targets
mean that a complex network of pathways exists, making it
difficult to predict the effect of selected miRNAs on
age-related muscle wasting. Computational modelling has the
potential to aid this process as it is possible to combine
models of individual miRNA:target interactions to form an
integrated network. As yet, no models of these interactions in
muscle exist. We created the first model of miRNA:target
interactions in myogenesis based on experimental evidence of
individual miRNAs which were next validated and used to make
testable predictions. Our model confirms that miRNAs regulate
key interactions during myogenesis and can act by promoting the
switch between quiescent/proliferating/differentiating
myoblasts and by maintaining the differentiation process. We
propose that a threshold level of miR-1 acts in the initial
switch to differentiation, with miR-181 keeping the switch on
and miR-378 maintaining the differentiation and miR-143
inhibiting myogenesis.
This model is hosted on
BioModels Database
and identified by:
MODEL1704110001.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Proctor2017 - Identifying microRNA for muscle regeneration during ageing (Mir378_in_muscle)
This model is described in the article:
Using computer simulation
models to investigate the most promising microRNAs to improve
muscle regeneration during ageing
Carole J. Proctor & Katarzyna
Goljanek-Whysall
Scientific Reports
Abstract:
MicroRNAs (miRNAs) regulate gene expression through
interactions with target sites within mRNAs, leading to
enhanced degradation of the mRNA or inhibition of translation.
Skeletal muscle expresses many different miRNAs with important
roles in adulthood myogenesis (regeneration) and myofibre
hypertrophy and atrophy, processes associated with muscle
ageing. However, the large number of miRNAs and their targets
mean that a complex network of pathways exists, making it
difficult to predict the effect of selected miRNAs on
age-related muscle wasting. Computational modelling has the
potential to aid this process as it is possible to combine
models of individual miRNA:target interactions to form an
integrated network. As yet, no models of these interactions in
muscle exist. We created the first model of miRNA:target
interactions in myogenesis based on experimental evidence of
individual miRNAs which were next validated and used to make
testable predictions. Our model confirms that miRNAs regulate
key interactions during myogenesis and can act by promoting the
switch between quiescent/proliferating/differentiating
myoblasts and by maintaining the differentiation process. We
propose that a threshold level of miR-1 acts in the initial
switch to differentiation, with miR-181 keeping the switch on
and miR-378 maintaining the differentiation and miR-143
inhibiting myogenesis.
This model is hosted on
BioModels Database
and identified by:
MODEL1704110002.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Proctor2017 - Identifying microRNA for muscle
regeneration during ageing (Mir143_in_muscle)
This model is described in the article:
Using computer simulation
models to investigate the most promising microRNAs to improve
muscle regeneration during ageing
Carole J. Proctor & Katarzyna
Goljanek-Whysall
Scientific Reports
Abstract:
MicroRNAs (miRNAs) regulate gene expression through
interactions with target sites within mRNAs, leading to
enhanced degradation of the mRNA or inhibition of translation.
Skeletal muscle expresses many different miRNAs with important
roles in adulthood myogenesis (regeneration) and myofibre
hypertrophy and atrophy, processes associated with muscle
ageing. However, the large number of miRNAs and their targets
mean that a complex network of pathways exists, making it
difficult to predict the effect of selected miRNAs on
age-related muscle wasting. Computational modelling has the
potential to aid this process as it is possible to combine
models of individual miRNA:target interactions to form an
integrated network. As yet, no models of these interactions in
muscle exist. We created the first model of miRNA:target
interactions in myogenesis based on experimental evidence of
individual miRNAs which were next validated and used to make
testable predictions. Our model confirms that miRNAs regulate
key interactions during myogenesis and can act by promoting the
switch between quiescent/proliferating/differentiating
myoblasts and by maintaining the differentiation process. We
propose that a threshold level of miR-1 acts in the initial
switch to differentiation, with miR-181 keeping the switch on
and miR-378 maintaining the differentiation and miR-143
inhibiting myogenesis.
This model is hosted on
BioModels Database
and identified by:
MODEL1704110003.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.