Project description:A novel halophilic and metal-reducing bacterium, Orenia metallireducens strain Z6, was isolated from briny groundwater extracted from a 2.02 km-deep borehole in the Illinois Basin, IL. This organism shared 96% 16S rRNA gene similarity with Orenia marismortui but demonstrated physiological properties previously unknown for this genus. In addition to exhibiting a fermentative metabolism typical of the genus Orenia, strain Z6 reduces various metal oxides [Fe(III), Mn(IV), Co(III), and Cr(VI)], using H2 as the electron donor. Strain Z6 actively reduced ferrihydrite over broad ranges of pH (6 to 9.6), salinity (0.4 to 3.5 M NaCl), and temperature (20 to 60°C). At pH 6.5, strain Z6 also reduced more crystalline iron oxides, such as lepidocrocite (γ-FeOOH), goethite (α-FeOOH), and hematite (α-Fe2O3). Analysis of X-ray absorption fine structure (XAFS) following Fe(III) reduction by strain Z6 revealed spectra from ferrous secondary mineral phases consistent with the precipitation of vivianite [Fe3(PO4)2] and siderite (FeCO3). The draft genome assembled for strain Z6 is 3.47 Mb in size and contains 3,269 protein-coding genes. Unlike the well-understood iron-reducing Shewanella and Geobacter species, this organism lacks the c-type cytochromes for typical Fe(III) reduction. Strain Z6 represents the first bacterial species in the genus Orenia (order Halanaerobiales) reported to reduce ferric iron minerals and other metal oxides. This microbe expands both the phylogenetic and physiological scopes of iron-reducing microorganisms known to inhabit the deep subsurface and suggests new mechanisms for microbial iron reduction. These distinctions from other Orenia spp. support the designation of strain Z6 as a new species, Orenia metallireducens sp. nov.ImportanceA novel iron-reducing species, Orenia metallireducens sp. nov., strain Z6, was isolated from groundwater collected from a geological formation located 2.02 km below land surface in the Illinois Basin, USA. Phylogenetic, physiologic, and genomic analyses of strain Z6 found it to have unique properties for iron reducers, including (i) active microbial iron-reducing capacity under broad ranges of temperatures (20 to 60°C), pHs (6 to 9.6), and salinities (0.4 to 3.5 M NaCl), (ii) lack of c-type cytochromes typically affiliated with iron reduction in Geobacter and Shewanella species, and (iii) being the only member of the Halanaerobiales capable of reducing crystalline goethite and hematite. This study expands the scope of phylogenetic affiliations, metabolic capacities, and catalytic mechanisms for iron-reducing microbes.
Project description:Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance but research into the mechanisms has been stymied by a lack of a genetically tractable pure culture which unequivocally does not use molecular oxygen to activate benzene. Geobacter metallireducens grew in a medium in which benzene was the sole electron donor and Fe(III) was the sole electron acceptor with a stoichiometry of benzene loss and Fe(III) reduction consistent with benzene oxidation to carbon dioxide coupled with Fe(III) reduction. Phenol labeled with 18O was produced when the medium was labeled with H218O, as expected for a true anaerobic conversion of benzene to phenol. Gene expression patterns indicated that benzene was metabolized through a phenol intermediate rather than benzoate or toluene. Deletion of ppcB, which encodes a subunit of the phenylphosphate carboxylase, an enzyme required for phenol metabolism, inhibited metabolism of benzene. Deleting genes specific for benzoate or toluene metabolism did not. Comparison of gene expression patterns in cells grown on benzene versus cells grown on phenol revealed genes specifically expressed in benzene-grown cells. Deletion of one of these, Gmet_3376, inhibited anaerobic benzene oxidation, but not the metabolism of phenol, benzoate, or toluene. The availability of a genetically tractable pure culture that can anaerobically convert benzene to phenol with oxygen derived from water should significantly accelerate elucidation of the mechanisms by which benzene can be activated in the absence of molecular oxygen. Total RNA from three separate cultures of G. metallireducens grown with 250 µM benzene three separate cultures of G. metallireducens grown with 500 µM phenol three separate cultures of G. metallireducens grown with 1 mM benzoate three separate cultures of G. metallireducens grown with 500 µM toluene three separate cultures of G. metallireducens grown with 10 mM acetate were used to study [1] Anaerobic oxidation of benzene by G. metallireducens (Benzene vs. acetate, Benzene vs. benzoate, Benzene vs. phenol, Benzene vs. toluene) [2] Anaerobic oxidation of benzoate by G. metallireducens (Benzoate vs. acetate) [3] Anaerobic oxidation of phenol by G. metallireducens (Phenol vs. acetate) [4] Anaerobic oxidation of toluene by G. metallireducens (Toluene vs. acetate) Each chip measures the expression level of 3,627 genes from G. metallireducens DSM 7210 with nine 45-60-mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.