Project description:Lung cancer is the leading cause of cancer death worldwide. Brain metastasis is a major cause of morbidity and mortality in lung cancer. CDH2 (N-cadherin, a mesenchymal marker in epithelial-mesenchymal transition) and ADAM9 (a member of type I transmembrane proteins) have been reported relating to lung cancer brain metastasis, however, it is still not clear whether any interaction between them to mediate lung cancer brain metastasis. Since microRNAs were discovered to regulate many biological functions and disease processes (e.g., cancer) by down-regulating their target genes, microRNA microarrays were used to identify ADAM9 regulated miRNAs that target CDH2 in aggressive lung cancer cells. Luciferase assays and immunoblotting proved that CDH2 was a target gene of miR-218. The expression of miR-218 was generated from pri-mir-218-1, located in SLIT2, in low invasive lung adenocarcinoma while it was inhibited in aggressive lung adenocarcinoma. Down-regulation of ADAM9 could up-regulate SLIT2 and miR-218, thus down-regulate CDH2 expression. This study elucidated the mechanism of ADAM9 activating CDH2 may be due to release the inhibition of miR-218 on CDH2 in lung adenocarcinoma. For each of the cell lines bm#2, bm#7, and F4, one microarray was analyzed.
Project description:Lung cancer is the leading cause of cancer death worldwide. Brain metastasis is a major cause of morbidity and mortality in lung cancer. CDH2 (N-cadherin, a mesenchymal marker in epithelial-mesenchymal transition) and ADAM9 (a member of type I transmembrane proteins) have been reported relating to lung cancer brain metastasis, however, it is still not clear whether any interaction between them to mediate lung cancer brain metastasis. Since microRNAs were discovered to regulate many biological functions and disease processes (e.g., cancer) by down-regulating their target genes, microRNA microarrays were used to identify ADAM9 regulated miRNAs that target CDH2 in aggressive lung cancer cells. Luciferase assays and immunoblotting proved that CDH2 was a target gene of miR-218. The expression of miR-218 was generated from pri-mir-218-1, located in SLIT2, in low invasive lung adenocarcinoma while it was inhibited in aggressive lung adenocarcinoma. Down-regulation of ADAM9 could up-regulate SLIT2 and miR-218, thus down-regulate CDH2 expression. This study elucidated the mechanism of ADAM9 activating CDH2 may be due to release the inhibition of miR-218 on CDH2 in lung adenocarcinoma. For each of the cell lines bm#2, bm#7, and F4, one microarray was analyzed.
Project description:Lung cancer is the leading cause of cancer death worldwide. Brain metastasis is a major cause of morbidity and mortality in lung cancer. CDH2 (N-cadherin, a mesenchymal marker in epithelial-mesenchymal transition) and ADAM9 (a member of type I transmembrane proteins) have been reported relating to lung cancer brain metastasis, however, it is still not clear whether any interaction between them to mediate lung cancer brain metastasis. Since microRNAs were discovered to regulate many biological functions and disease processes (e.g., cancer) by down-regulating their target genes, microRNA microarrays were used to identify ADAM9 regulated miRNAs that target CDH2 in aggressive lung cancer cells. Luciferase assays and immunoblotting proved that CDH2 was a target gene of miR-218. The expression of miR-218 was generated from pri-mir-218-1, located in SLIT2, in low invasive lung adenocarcinoma while it was inhibited in aggressive lung adenocarcinoma. Down-regulation of ADAM9 could up-regulate SLIT2 and miR-218, thus down-regulate CDH2 expression. This study elucidated the mechanism of ADAM9 activating CDH2 may be due to release the inhibition of miR-218 on CDH2 in lung adenocarcinoma.
Project description:Lung cancer is the leading cause of cancer death worldwide. Brain metastasis is a major cause of morbidity and mortality in lung cancer. CDH2 (N-cadherin, a mesenchymal marker in epithelial-mesenchymal transition) and ADAM9 (a member of type I transmembrane proteins) have been reported relating to lung cancer brain metastasis, however, it is still not clear whether any interaction between them to mediate lung cancer brain metastasis. Since microRNAs were discovered to regulate many biological functions and disease processes (e.g., cancer) by down-regulating their target genes, microRNA microarrays were used to identify ADAM9 regulated miRNAs that target CDH2 in aggressive lung cancer cells. Luciferase assays and immunoblotting proved that CDH2 was a target gene of miR-218. The expression of miR-218 was generated from pri-mir-218-1, located in SLIT2, in low invasive lung adenocarcinoma while it was inhibited in aggressive lung adenocarcinoma. Down-regulation of ADAM9 could up-regulate SLIT2 and miR-218, thus down-regulate CDH2 expression. This study elucidated the mechanism of ADAM9 activating CDH2 may be due to release the inhibition of miR-218 on CDH2 in lung adenocarcinoma.
Project description:Objective: Fibroblast-like synovial cells (FLS) have multilineage differentiation potential including osteoblasts. We aimed to investigate the role of microRNAs during the osteogenic differentiation of rheumatoid arthritis (RA)-FLS. Methods: MicroRNA(miRNA) array analysis was performed to investigate the differentially expressed miRNAs during the osteogenic differentiation. Expression of miR-218-5p (miR-218) during the osteogenic differentiation was determined by quantitative real-time PCR. Transfection with miR-218 precursor and inhibitor were used to confirm the targets of miR-218 and to analyse the ability of miR-218 to induce osteogenic differentiation. Results: The miRNA array revealed that 12 miRNAs were up-regulated and 24 miRNAs were down-regulated after osteogenic differentiation. We observed that miR-218 rose in the early phase of osteogenic differentiation and then decreased. Micro array analysis revealed the mir-218 modulate the expression of ROBO1 in RA-FLS. The induction of miR-218 in RA-FLS decreased ROBO1 expression, and promoted osteogenic differentiation.
Project description:Receptor tyrosine kinase pathway signalings plays a central role in the growth and progression of glioblastoma, a highly aggressive group of brain tumors. We recently reported that miR-218 repression, an essentially uniform feature of human GBM, directly promotes RTK hyperactivation by increasing the expression of key positive signaling effectors, including EGFR, PLCr1, PIK3CA and ARAF. However, enhanced RTK signaling is known to activate compensatory inhibitory feedback mechanisms in both normal and cancer cells. We demonstrate here that miR-218 repression in GBM cells also increases the abundance of additional up stream and downstream signaling mediators, including PDGFRa, RSK2, and S6K1, which collectively funciton to alleviate inhibitory RTK feedback regulation. In turn, RTK signaling suppresses miR-218 expression via STAT3, which binds to the miR-218 locus, along with BCLAF1, to repress its expression. These data identify novel interacting feedback loops by which miR-218 repression promotes increased RTK signaling in high-grade gliomas.
Project description:Kirsten rat sarcoma virus (KRAS) signaling drives pancreatic ductal adenocarcinoma (PDAC) malignancy, which is an unmet clinical need. Here we identify a disintegrin and metalloproteinase domain 9 (ADAM9) as a modulator of PDAC progression via stabilization of wild-type and mutant KRAS proteins. Mechanistically, ADAM9 loss increases the interaction of KRAS with plasminogen activator inhibitor-1 (PAI-1), which functions as a selective autophagy receptor in conjunction with LC3, triggering the lysosomal degradation of KRAS. Suppression of ADAM9 by a small molecule inhibitor restricts disease progression in spontaneous models, and the combination with gemcitabine elicits dramatic regression of patient-derived tumors. Our findings provide a promising strategy to target the KRAS signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in PDAC.