Project description:We performed a transcriptomic analysis of Pi starvation responses in Arabidopsis thaliana (Columbia-0) wild type plants under phosphate starvation stress and in plants with altered PHR1(-like) activity, comparing mutants of phr1 and phr1-phl1 grown in phosphate-lacking medium. Results show the central role of PHR1 and functionally redundant members of its family in the control of transcriptional responses to Pi starvation.
Project description:We examined the changes in gene expression in Arabidopsis thaliana grown under arsenate stress. The transcriptional profiling reveals antioxidant activity and repression of the phosphate starvation response. Keywords: dual label, stress response
Project description:This SuperSeries is composed of the following subset Series: GSE33790: The response and recovery of Arabidopsis thaliana transcriptome to phosphate starvation [ATH1-121501] GSE33996: The response and recovery of Arabidopsis thaliana transcriptome to phosphate starvation [At35b_MR] Refer to individual Series
Project description:We performed a transcriptomic analysis of Pi starvation responses in Arabidopsis thaliana (Columbia-0) wild type plants under phosphate starvation stress and in plants with altered PHR1(-like) activity, comparing mutants of phr1 and phr1-phl1 grown in phosphate-lacking medium. Results show the central role of PHR1 and functionally redundant members of its family in the control of transcriptional responses to Pi starvation. The analysis was performed in wild-type plants grown for seven days in complete (+Pi) and Pi-lacking (-Pi) Johnson solid media and the single phr1 and double phr1-phl1 mutants grown for 7 days in –Pi medium. Three independent biological samples of total RNA from shoot and root were hybridized separately.
Project description:Background: Over application of phosphate fertilizers in modern agriculture contaminates waterways and disrupts natural ecosystems. Nevertheless, this is a common practice among farmers, especially in developing countries as abundant fertilizers are believed to boost crop yields. The study of plant phosphate metabolism and its underlying genetic pathways is key to discovering methods of efficient fertilizer usage. The work presented here describes the first genome-wide resource on the molecular dynamics underpinning the response and recovery in roots and shoots of Arabidopsis thaliana to phosphate-starvation. Results: Genome-wide profiling revealed minimal overlap between root and shoot transcriptomes suggesting two independent phosphate-starvation regulons. Novel gene expression patterns were detected for over 1000 candidates and were classified as either initial, persistent, or latent responders. Comparative analysis to AtGenExpress identified novel cohorts of genes co-regulated across multiple stimuli. The hormone ABA displayed a dominant role in regulating many phosphate-responsive candidates. Analysis of co-regulation enabled the determination of primary versus redundant members of closely related gene families with respect to phosphate-starvation. Thus, among others, we show that PHO1 acts in shoot, whereas PHO1;H1 is likely the primary regulator in root. Conclusion: Our results uncover a much larger, staged responses to phosphate-starvation than previously described. To our knowledge, this work describes the highest resolution of genome-wide data on plant nutrient stress to date.
Project description:In order to elucidate the role of the Arabidopsis thaliana LLM-domain B-GATAs in response to high light intensities, a transcriptomic analysis of Col-0, a hexuple LLM-domain B-GATA mutant hex (gnc gnl gata15 gata16 gata17 gata17l) and GNLox under high-ligh stress conditions was performed.
Project description:Total mRNA was extracted from the root tips (2-3 mm from the root apex) of wild-type plants (Col-0 accession) and med16-2 mutants grown under low and high phosphate conditions 4 days after germination, using and sequenced by RNA-seq methodology.