Project description:A genome-wide expression analysis was undertaken to identify novel genes specifically activated from early stages of gametocytogenesis in Plasmodium falciparum. A comparative analysis was conducted on sexually induced cultures of reference parasite clone 3D7 and its gametocyteless derivative clone F12. Competitive hybridisations on long-oligomer microarrays representing 4488 P. falciparum genes identified a remarkably small number of transcripts differentially produced in the two clones. Upregulation of the mRNAs for the early gametocyte markers Pfs16 and Pfg27 was however readily detected in 3D7, and such genes were used as reference transcripts in a comparative time course analysis of 3D7 and F12 parasites between 30 and 40 h post-invasion in cultures induced to enter gametocytogenesis. One hundred and seventeen genes had expression profiles which correlated to those of pfs16 and pfg27, and Northern blot analysis and published proteomic data identified those whose expression was gametocyte-specific. Immunofluorescence analysis with antibodies against two of these gene products identified two novel parasite membrane associated, sexual stage-specific proteins. One was produced from stage I gametocytes and the second showed peak production in stage II gametocytes. The two proteins were named Pfpeg-3 and Pfpeg-4, for P. falciparum proteins of early gametocytes.
Project description:The gametocyte transcriptomes were generated in P.falciparum parasites of 3D7 strain after PfHP1 depletion aming to determin the transriptional profiles of sexual stages during the parasites gametocyte development.
Project description:Differentiation from asexual blood stages to sexual gametocytes is required for transmission of malaria parasites from the human to the mosquito host. Preventing gametocyte commitment and development would block parasite transmission, but the underlying molecular mechanisms behind these processes remain poorly understood. Here, we report that the ApiAP2 transcription factor, PfAP2-G2 (PF3D7_1408200) plays a critical role in the maturation of Plasmodium falciparum gametocytes. PfAP2-G2 binds to the promoters of a wide array of genes that are expressed at many stages of the parasite life cycle. Interestingly, we also find binding of PfAP2-G2 within the gene body of almost 3000 genes, which strongly correlates with the location of H3K36me3 and several other histone modifications as well as Heterochromatin Protein 1 (HP1), suggesting that occupancy of PfAP2-G2 in gene bodies may serve as an alternative regulatory mechanism. Disruption of pfap2-g2 does not impact asexual development, parasite multiplication rate, or commitment to sexual development but the majority of sexual parasites are unable to mature beyond stage III gametocytes. The absence of pfap2-g2 leads to overexpression of 28% of the genes bound by PfAP2-G2 and none of the PfAP2-g2 bound are downregulated, suggesting that it is a repressor. We also find that PfAP2-G2 interacts with chromatin remodeling proteins, a microrchidia (MORC) protein, and another ApiAP2 protein (PF3D7_1139300). Overall our data demonstrate that PfAP2-G2 is an important transcription factor that establishes an essential gametocyte maturation program in association with other chromatin-related proteins.
Project description:Differentiation from asexual blood stages to sexual gametocytes is required for transmission of malaria parasites from the human to the mosquito host. Preventing gametocyte commitment and development would block parasite transmission, but the underlying molecular mechanisms behind these processes remain poorly understood. Here, we report that the ApiAP2 transcription factor, PfAP2-G2 (PF3D7_1408200) plays a critical role in the maturation of Plasmodium falciparum gametocytes. PfAP2-G2 binds to the promoters of a wide array of genes that are expressed at many stages of the parasite life cycle. Interestingly, we also find binding of PfAP2-G2 within the gene body of almost 3000 genes, which strongly correlates with the location of H3K36me3 and several other histone modifications as well as Heterochromatin Protein 1 (HP1), suggesting that occupancy of PfAP2-G2 in gene bodies may serve as an alternative regulatory mechanism. Disruption of pfap2-g2 does not impact asexual development, parasite multiplication rate, or commitment to sexual development but the majority of sexual parasites are unable to mature beyond stage III gametocytes. The absence of pfap2-g2 leads to overexpression of 28% of the genes bound by PfAP2-G2 and none of the PfAP2-g2 bound are downregulated, suggesting that it is a repressor. We also find that PfAP2-G2 interacts with chromatin remodeling proteins, a microrchidia (MORC) protein, and another ApiAP2 protein (PF3D7_1139300). Overall our data demonstrate that PfAP2-G2 is an important transcription factor that establishes an essential gametocyte maturation program in association with other chromatin-related proteins.
Project description:Investigation of whole genome gene expression level changes in Plasmodium falciparum 3D7 delta-PfPuf2 mutant, compared to the wild-type strain 3D7. The mutation engineered into this strain render tanslational control. The mutants analyzed in this study are further described in Miao J, Li J, Fan Q, Li X, Li X, Cui L.2010. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci. 123(7):1039-49 (PMID 20197405). A 12 chip study using total RNA recovered from six separate wild-type cultures of Plasmodium falciparum 3D7 at gametocyte stage III (three cultures) and stage V (three cultures) and six separate cultures of dalta PfPuf2 mutant at gametocyte stage III (three cultures) and stage V (three cultures). Each chip measures the expression level of 5,367 genes from Plasmodium falciparum 3D7 with 45-60 mer probes with two replicates on final array of 71618 probes.
Project description:Transcriptional profiling of gametocyte non-producer lines in Plasmodium berghei Transcriptome of gametocyte non producer lines (natural and genetic KO) and parental (820) lines. The aim of the study was to identify key genes involved in the decision to commit to gametocytogenesis in Plasmodium berghei. These microarrays compare naturally selected lines that do not produce gametocytes, and the parental line and additionally a genetic knock out of AP2-G PBANKA_143750. Data published Sinha, Hughes, et, al Nature tbc. 2- colour microarray comparing to common background pool (containing all life cycle stages). Replicates of different life cycle stages of gametocyte non-producer lines and wild tye (WT) parental control lines
Project description:To date, total mRNA analysis throughout intraerythrocytic development of the malaria parasite, Plasmodium falciparum, has only revealed abundance profiles of each gene at a given time. Here, we establish a new methodology in Plasmodium falciparum that enables biosynthetic labeleing and capture of sub-population mRNA. As a proof of principle for this novel method, we examine the mRNA dynamics of early gametocyte commitment. Plasmodium falciparum strains 3D7, E5, and F12 were highly synchronized and, at 36 hours post invasion, incubated with 40um 4-TU for 12 hours followed immediately by Trizol total RNA extraction. Total RNA from each timepoint was then biotinylated via a thiol-group on any transcript that incorporated a thiol-modified UTP. Biotinylated transcripts were then separated from total RNA by Streptavidin magnetic beads resulting in a Labeled sample. Any mRNA that was not bound to the beads resulted in an Unlabeled sample. Every 12 hours, two samples were analyzed by Agilent P. falciparum DNA microarray, Unlabeled and Labeled, resulting in 48 individual DNA microarrays (4 for each sample type).