Project description:We constructed a non-flocculating strain PLY01 from industrial flocculating strain SPSC01. In the presence of 5.0 g/L acetic acid stress, SPSC01 showed better growth and fermentation performance compared to PLY01. For probing mechanism of improved acetic acid tolerance induced by flocculation, we performed proteomic analysis to mining key proteins and regulation network.
Project description:We constructed non-flocculating strain PLY01 from industrial flocculating strain SPSC01. In the presence of 5.0 g/L acetic aicd stress, SPSC01 showed better growth and fermentation performance compared to PLY01. For probing mechanism of improved acetic acid tolerance induced by flocculation, we performed phosphoproteomic analysis to mine key proteins whose phosphorylation level has changed and regulation network.
Project description:High concenHigh concentration acetic acid in the fermentation medium represses cell growth, metabolism and fermentation efficiency of Saccharomyces cerevisiae, which is widely used for cellulosic ethanol production. Our previous study proved that supplementation of zinc sulfate in the fermentation medium improved cell growth and ethanol fermentation performance of S. cerevisiae under acetic acid stress condition. However, the molecular mechanisms is still unclear. To explore the underlying mechanism of zinc sulfate protection against acetic acid stress, transcriptomic and proteomic analysis were performed. The changed genes and proteins are related to carbon metabolism, amino acid biosynthesis, energy metabolism, vitamin biosynthesis and stress responses. In a total, 28 genes showed same expression in transcriptomic and proteomic data, indicating that zinc sulfate affects gene expression at posttranscriptional and posttranslational levels.tration acetic acid in the fermentation medium represses cell growth, metabolism and fermentation efficiency of Saccharomyces cerevisiae, which is widely used for cellulosic ethanol production. Our previous study proved that supplementation of zinc sulfate in the fermentation medium improved cell growth and ethanol fermentation performance of S. cerevisiae under acetic acid stress condition. However, the molecular mechanisms is still unclear. To explore the underlying mechanism of zinc sulfate protection against acetic acid stress, transcriptomic and proteomic analysis were performed. The changed genes and proteins are related to carbon metabolism, amino acid biosynthesis, energy metabolism, vitamin biosynthesis and stress responses. In a total, 28 genes showed same expression in transcriptomic and proteomic data, indicating that zinc sulfate affects gene expression at posttranscriptional and posttranslational levels.
Project description:Genes whose expression correlated to the acetic acid tolerance in S. cerevisiae were identified by DNA microarray analysis. Gene expression profiles of two S. cerevisiae strains showing different levels of acetic acid tolerance were compared and an acetic acid tolerance-related gene chosen.
Project description:The modification of the The modification of the tolerance of xylose-fermenting yeast is an urgent issue for improving ethanol production. In this study, multiple genes involving in superoxide dismutase, glutathione biosynthesis, NADPH regeneration and acetic acid degradation were overexpressed using stress-induced promoters, which is selected from the transcriptome data. Stress-induced promoters were used to realize the feedback control of the tolerant genes, which can ultimately improve the tolerance and ethanol production. We reported the stress-induced promoters for overexpressing tolerant genes and increasing yeast tolerance in a feedback manner
Project description:A new laboratory evolution approach to select for constitutive acetic-acid tolerance in Saccharomyces cerevisiae and identification of causal mutations