Project description:Several mechanisms have been proposed to account for Sdh-mutation-induced tumorigenesis, the most accepted of which is based on the constitutive expression of the hypoxia-inducible factor 1alpha (Hif1alpha) at normal oxygen tension, a theory referred to as pseudo-hypoxic drive. Other molecular processes, such as oxidative stress, apoptosis or chromatin remodeling have been also proposed to play a causative role. Nevertheless, the actual contribution of each of these mechanisms has not been definitively established. Moreover, the biological factors that determine the tissue-specificity of these tumors have not been identified. In this work, we made use of the inducible SDHD-ESR mouse, a conditional mutant in the SdhD gene, which encodes the small subunit of MCII, and that acts as a tumor suppressor gene in humans. We performed microarray analysis of adrenal medulla (AM) in order to identify other early gene expression changes elicited by SdhD deletion. 8 samples from heterozygous (+/-) and 8 samples from null mutants (SDHD-ESR), paired by two and hybrydized against a pool of 8 samples from homozygous wt (+/+) animals.
Project description:Several mechanisms have been proposed to account for Sdh-mutation-induced tumorigenesis, the most accepted of which is based on the constitutive expression of the hypoxia-inducible factor 1alpha (Hif1alpha) at normal oxygen tension, a theory referred to as pseudo-hypoxic drive. Other molecular processes, such as oxidative stress, apoptosis or chromatin remodeling have been also proposed to play a causative role. Nevertheless, the actual contribution of each of these mechanisms has not been definitively established. Moreover, the biological factors that determine the tissue-specificity of these tumors have not been identified. In this work, we made use of the inducible SDHD-ESR mouse, a conditional mutant in the SdhD gene, which encodes the small subunit of MCII, and that acts as a tumor suppressor gene in humans. We performed microarray analysis of adrenal medulla (AM) in order to identify other early gene expression changes elicited by SdhD deletion.
Project description:Genotype specific differences in expression profiles have been evaluated using human HuGene1.0-ST Gene Chips. In this dataset we include expression data obtained from 8 normal adrenal medulla and 45 PHEOs/PGLs patient samples. Viable appearing tissue from the center of the lesions was collected and snap frozen for RNA extraction. Each of the 45 PHEO/PGL samples was examined by pathologist upon resection. Patients PKh_27 and PKh_28 with SDHB mutation were from the same patient with samples taken from two different locations at different times. Diagnosis of PHEO/PGL has been confired in all cases histopathologically. The tissues were grouped according to genetic/syndromic background and tumor location into SDHB (n = 18), SDHD-A/T (n = 6), SDHD-HN (n= 8), and VHL (n = 13).
Project description:Several mechanisms have been proposed to account for Sdh-mutation-induced tumorigenesis, the most accepted of which is based on the constitutive expression of the hypoxia-inducible factor 1alpha (Hif1alpha) at normal oxygen tension, a theory referred to as pseudo-hypoxic drive. Other molecular processes, such as oxidative stress, apoptosis or chromatin remodeling have been also proposed to play a causative role. Nevertheless, the actual contribution of each of these mechanisms has not been definitively established. Moreover, the biological factors that determine the tissue-specificity of these tumors have not been identified. In this work, we made use of the inducible SDHD-ESR mouse, a conditional mutant in the SdhD gene, which encodes the small subunit of MCII, and that acts as a tumor suppressor gene in humans. We performed microarray analysis of kidney in order to identify other early gene expression changes elicited by SdhD deletion. 8 samples from heterozygous (+/-) and 8 samples from null mutants (SDHD-ESR), paired by two and hybrydized against a pool of 8 samples from homozygous wt (+/+) animals.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.