Project description:Chronic exposure to inorganic arsenic (iAs) or a high-fat diet (HFD) can produce liver injury. However, the interactive molecular biological effects and mechanism of iAs and HFD are as of yet unclear. We used microarrays to detail the interactive effects of arsenic and a high-fat diet on hepatic gene expression. The C57BL/6 Mice fed low-fat diet (LFD) or HFD were exposed to 3 mg/L iAs or deionized water for 10 weeks. Then, hepatic RNA were extraction and hybridization on Affymetrix microarrays. Differentially expressed genes in LFD+As, HFD, and HFD+As groups compared to LFD group were identified, and interactive molecular biological effects and mechanism of iAs and HFD were discussed.
Project description:PXR deficient mice were fed high-fat diet (HFD) and treated with PCN, a selective murine PXR agonist, and hepatic effects of the high-fat diet feeding and PCN treatment were studied.
Project description:To investigate the effects of quality of fat in a high fat diet (HFD) over time on hepatic lipid storage and transcriptome in mice. In this dataset, we include the expression data obtained from dissected mouse liver after being fed with Control, HFD-EPA/DHA and HFD-corn oil diet for 8 and 12 weeks.
Project description:The objective of the experiment was to dissect the effects of a high-fat diet on juvenile adipose tissue gene expression under conditions of excess calorie intake versus normal calorie intake in comparison to a standard low-fat diet. For this purpose juvenile mice were fed (A) a standard low-fat diet (CD), (B) a high-fat diet ad libitum (excess calorie intake) (HFD) and (C) a high-fat diet with calorie consumption restricted to the calorie consumption of the CD diet (R-HFD). RNA expression was profiled after 1 week of feeding in the periuterine fat depot.
Project description:This study sought to interrogate the effects of lipids and lipid metabolites on the hepatic proteome. Protein expression in high-fat diet (HFD) mouse livers vs. livers of normal chow fed (NC) mice were investigated using multiplexed quantitative LC-MS/MS (TMT labeling). This experiment contains additional replicates for normal chow and mice on high-fat diet for 16 weeks.
Project description:Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder with high morbidity and mortality. The current study aims to explore the role of Cullin-associated and neddylation-dissociated protein 1 (CAND1) in the development of NAFLD and the underlying mechanisms. CAND1 is reduced in the liver of NAFLD male patients and high fat diet (HFD)-fed male mice. CAND1 alleviates palmitate (PA) induced lipid accumulation in vitro. Hepatocyte-specific knockout of CAND1 exacerbates HFD-induced liver injury in HFD-fed male mice, while hepatocyte-specific knockin of CAND1 ameliorates these pathological changes. Mechanistically, deficiency of CAND1 enhances the assembly of Cullin1, F-box only protein 42 (FBXO42) and acetyl-CoA acyltransferase 2 (ACAA2) complexes, and thus promotes the ubiquitinated degradation of ACAA2. ACAA2 overexpression abolishes the exacerbated effects of CAND1 deficiency on NAFLD. Additionally, androgen receptor binds to the -187 to -2000 promoter region of CAND1. Collectively, CAND1 mitigates NAFLD by inhibiting Cullin1/FBXO42 mediated ACAA2 degradation
Project description:To identify molecular mechanism underlying the protection from diet-induced hepatic steatosis in AHNAK deficiency mice, we examined microarray analysis with liver sample from HFD-fed AHNAK KO and WT mice. Two-condition experiment, regular chow (CD) -fed WT vs. CD-fed AHNAK KO and High fat diet(HFD)-fed WT vs. HFD-fed AHNAK KO mice. Biological replicates: 3 control, One replicate per array.
Project description:The goal was to study the long term metabolic programming effects of exposure of offspring to a dam eating 60% high fat diet during the lactation period only. We previously showed that offspring from dams given lactational high fat diet (HFD) are predisposed to obesity, glucose intolerance and inflammation. The purpose of these studies was to understand the programming implications of lactational HFD on offspring metabolic liver disease risk. Dams were fed a 60% lard-based HFD from the day of delivery through the 21 day lactation period. Starting at weaning offspring were fed normal fat diet until 3 months of age at which point a subset were challenged with an additional HFD stressor. Lactational HFD fed male offspring developed hepatic insulin resistance. Postweaning HFD challenge led male offspring progressing to NAFLD with more severe outcomes in the lactational HFD challenged offspring.