Project description:We compared whole genome expression profiles of GSCs with normal human cortex, human neural stem cells (hNSC) from fetal cortex, glioblastoma (GBM) primary, and recurrent tumors to find GSC-specific plasma membrane transcripts. All of the expression profiles were batch normalized by a robust multichip average (RMA) algorithm using Geospiza GeneSifter (PerkinElmer) online microarray database and analysis software. The data was then exported into Microsoft Office Excel 2010 and organized for GSC transcripts with raw intensity values 10 fold or higher over normal brain, hNSCs, GBM primary and recurrent tumor samples. The reverse sorting algorithm was done to obtain downregulated GSC trascripts.
Project description:We compared whole genome expression profiles of GSCs with normal human cortex, human neural stem cells (hNSC) from fetal cortex, glioblastoma (GBM) primary, and recurrent tumors to find GSC-specific plasma membrane transcripts.
Project description:<p>Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets.</p><h4><strong>SIGNIFICANCE: </strong>Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.</h4><p><br></p><p><strong>Xenograft assays</strong> are reported in the current study <strong>MTBLS730</strong>.</p><p><strong>Stem cell and cell line assays</strong> are reported in <a href='https://www.ebi.ac.uk/metabolights/MTBLS4708' rel='noopener noreferrer' target='_blank'><strong>MTBLS4708</strong></a>.</p>
Project description:<p>Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets.</p><h4><strong>SIGNIFICANCE: </strong>Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.</h4><p><br></p><p><strong>Stem cell and cell line assays</strong> are reported in the current study <a href='https://www.ebi.ac.uk/metabolights/MTBLS4708' rel='noopener noreferrer' target='_blank'><strong>MTBLS4708</strong></a>.</p><p><strong>Xenograft assays</strong> are reported in <a href='https://www.ebi.ac.uk/metabolights/MTBLS730' rel='noopener noreferrer' target='_blank'><strong>MTBLS730</strong></a>.</p>
Project description:Malignant glioblastoma (GBM) is a highly aggressive brain tumor with a dismal prognosis and limited therapeutic options. Genomic profiling of GBM samples in the TCGA database has identified four molecular subtypes (Proneural, Neural, Classical and Mesenchymal), which may arise from different glioblastoma stem-like cell (GSC) populations. In the present study, we identify two GSC populations that produce GBM tumors by subcutaneous and intracranial injection with identical histological features. Gene expression analysis revealed that xenografts of GSCs grown as spheroid cultures had a Classical molecular subtype similar to that of bulk tumor cells. In contrast xenografts of GSCs grown as adherent cultures on laminin-coated plates expressed a Mesenchymal gene signature. Adherent GSC-derived xenografts had high STAT3 and ANGPTL4 expression as well as enrichment for stem cell markers, transcriptional networks and pro-angiogenic markers characteristic of the Mesenchymal subtype. Examination of clinical samples from GBM patients showed that STAT3 expression was directly correlated with ANGPTL4 expression, and that increased expression of these genes correlated with poor patient survival and performance. A pharmacological STAT3 inhibitor abrogated STAT3 binding to the ANGPTL4 promoter and exhibited anticancer activity in vivo. Taken together, we identified two distinct GSC populations that produce histologically identical tumors but with very different gene expression patterns, and a STAT3/ ANGPTL4 pathway in glioblastoma that may serve as a target for therapeutic intervention. 2 samples of each variable were analyzed. Cells were cultured under normal adherent conditon (Bulk tumor cells), non-adherent plates with stem cell medium (Sp-GSC) or laminin-coated plates with stem cell medium (Ad-GSC). Xenografts were generated in NSG mice by subcutaneous inoculation.
Project description:The DNA methylation profiles of Glioma Stem Cell (GSC) lines were investigated in order to find the stem cell signature associated to glioblastoma (GBM). This goal was achieved through the comparison of GSC methylation data with FFPE-GBM biopsies and human foetal Neural Stem Cell (NSC) lines profiles.
Project description:miRNAs are found to be extremely stable in extracellular fluids of mammals, such as blood plasma, serum, etc. The expression profiles of these circulating miRNAs have immense potential for use as novel minimally invasive markers in monitoring Dengue diseases progression.
Project description:Chromatin accessibility discriminates stem from mature cell populations, enabling the identification of primitive stem-like cells in primary tumors, such as Glioblastoma (GBM) where self-renewing cells driving cancer progression and recurrence are prime targets for therapeutic intervention. We show, using single-cell chromatin accessibility, that primary GBMs harbor a heterogeneous self-renewing population whose diversity is captured in patient-derived glioblastoma stem cells (GSCs). In depth characterization of chromatin accessibility in GSCs identifies three GSC states: Reactive, Constructive, and Invasive, each governed by uniquely essential transcription factors and present within GBMs in varying proportions. Orthotopic xenografts reveal that GSC states associate with survival, and identify an invasive GSC signature predictive of low patient survival. Our chromatin-driven characterization of GSC states improves prognostic precision and identifies dependencies to guide combination therapies.