Project description:Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements, collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, which is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq datasets from cells grown under various physiological conditions, we identify 3' UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as well as alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation, by functional assays including qRT-PCR and 3'RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin are generally (on chromosome 2) associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A).
Project description:Genome wide map of heterochromatin state in fission yeast Schizosaccharomyces pombe via 4 different strains Examination of a single histone modification in 4 different fission yeast strains
Project description:We sequenced the 3' ends of polyadenylated transcripts among total RNA in fission yeast wildtype and rdp1∆ cells and mapped the 3'-most nucleotide prior to polyadenylation. We find that mRNA-coding open reading frames have a low number of polyadenylation sites with most of the reads, whereas pericentromeric dg and dh repeats have a high number of polyadenylation sites throughout the transcribed region, mapping to both strands. direct sequencing of polyadenylated 3' ends of RNA (Helicos)
Project description:Here, we report the high-throughput profiling of histone modification (H3K9me2) in fission yeast Schizosaccharomyces pombe. We generated genome-wide H3K9me2 maps of fission yeast mutants in swo1-26 (temperature sensitive, ts) cells at 25℃ and 37℃. We find that H3K9me2 enrichment at heterochromatin regions, especially at the mating-type locus and subtelomeres, is compromised, suggesting heterochromatin assembly defects.