Project description:Epigenetic modifications are known to profoundly affect the development and behavior of social insects. In the well-known caste differentiation process of honeybee (Apis mellifera), female larvae with identical genomes are fed royal jellydifferently and develop into either normal workers or into very large, long-lived, and extremely fecund queens, and the queen-worker asymmetry of honeybee is known to be result largely to differential genomic imprinting during larval development that involves DNA methylation-based regulation. The discovery of reversible N6-methyladenosine (m6A) RNA methylation modification has defined a new era for RNA-metabolism-related genetic regulation, yet much remains unknown about m6A-mediated post-transcriptional regulatory mechanisms. Here, we report the first honeybee RNA m6A methylome. Specifically, we used the m6A-seq technique to examine the RNA m6A methylomes of honeybee larvae, including queen and worker larvae at multiple instar stages. We identified multiple conserved features of m6A methylation machinery and transcriptome-wide m6A distribution trends among insect species, and observed that m6A marks exert functions in regulating caste differentiation, with apparently particularly strong functional impacts on fifth instar worker larvae. Functional annotation of differentially methylated candidate caste-differentiation-related transcripts revealed many known regulators of caste differentiation (e.g. ILP-2, p110, PI3K, and JHAMT etc.) as well as the widely-studied Vitellogenin gene, which has not previously been implicated in caste differentiation. As ever-more regulatory roles for m6A marks are discovered, honeybees may become an excellent model studying the biology of such epi-transcriptomic regulatory systems, from embryonic development through holometabolous caste-specific development and on towards behavior and the emergent social hierarchies underlying eusociality in animals.
Project description:Apis mellifera intermissa (Buttel-Reepen, 1906) is the native honeybee subspecies of Algeria. A.m.intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts (Ruttner, 1988), in an area of more than 2500 km long. Intermissa indicates the position through this bee races between tropical Africa and European breeds (Peyvel, 1994). The settlement area of the Tellian extends from Tunisia to Morocco. Ruttner et al (1978) describes the pure Tellian. It is a black hair of his coat poverty brings out the black color. It is a small size, there are some times light illumination on the tergites. This bee is very aggressive, nervous, sick to take part, as swarms huge fall and even produced many brood and can build up to one hundred queen cells (Le Conte, 2002). A.m.intermissa is prone to swarming, shows an aggressive behaviour and an abundant use of propolis (Ruttner 1988). This study is part of the project funded by the USAID Grant No. TA-MOU-08-M29-075.
Project description:Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Middle East. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp Vespa orientalis and in most cases it is resistant to varroa mites. The Thorax control sample of A. m. syriaca in this experiment was originally collected and stored since 2001 from Wadi Ben Hammad a remote valley in the southern region of Jordan. Using morphometric and Mitochondrial DNA markers it was proved that bees from this area had show higher similarity than other samples collected from the Middle East as represented by reference samples collected in 1952 by Brother Adam. The samples L1-L5 are collected from the National Center for Agricultural Research and Extension breading apiary which was originally established for the conservation of Apis mellifera syriaca. Goal was to use the genetic information in the breeding for varroa resistant bees and to determine the successfulness of this conservation program. Project funded by USAID-MERC grant number: TA-MOU-09-M29-075.
Project description:Transcriptional profiling of male and female honeybee embryos 10-15 h, 25-40 h, 55-70 h after egg laying was performed by RNA-SEQ. The sex specific expressed and spliced genes were examined comparing male and female embryos.
Project description:Transcriptional profiling of the antennae of adult honeybee workers with a dsx stop/stop mutation and wild-type workers was performed by RNA-Seq. Gene expression of the dsx stop/stop and wild type female workers was compared.
Project description:To determine the impact of quercetin on honeybee development and physiology, we conducted an RNASeq analysis of gene expression in neonate larvae exposed for three days to control “bee candy” diet (comprising sucrose and sugar syrup) or diets to which 0.1 mM or 0.25 mM quercetin was added.