Project description:Municipal wastewater effluent can impact its receiving environment. In the St. Lawrence River, male fish living downstream from Montreal exhibit increased hepatic vitellogenin, intersex, delayed spermatogenesis and altered immune function. Few studies have examined genome-wide effects associated with municipal effluent exposure in fish to decipher the mechanisms of toxicity. The present objective was to identify hepatic cellular signaling pathways in fathead minnows following exposure to municipal wastewater effluent. Immature minnows were exposed for 21 days to either 0% (Control) or 20% municipal effluent, the highest concentration in the St. Lawrence River. Hepatic RNA was extracted and used to hybridize a fathead minnow oligonucleotide microarray containing approximately 15K gene sequences.
Project description:We investigated the impacts of wastewater effluent exposure on gene expression in adult fathead minnows, a freshwater fish commonly used as an ecotoxicological model.
Project description:Municipal wastewater effluent can impact its receiving environment. In the St. Lawrence River, male fish living downstream from Montreal exhibit increased hepatic vitellogenin, intersex, delayed spermatogenesis and altered immune function. Few studies have examined genome-wide effects associated with municipal effluent exposure in fish to decipher the mechanisms of toxicity. The present objective was to identify hepatic cellular signaling pathways in fathead minnows following exposure to municipal wastewater effluent. Immature minnows were exposed for 21 days to either 0% (Control) or 20% municipal effluent, the highest concentration in the St. Lawrence River. Hepatic RNA was extracted and used to hybridize a fathead minnow oligonucleotide microarray containing approximately 15K gene sequences. Sixteen samples were examined, 8 control samples and 8 exposed samples.
Project description:We evaluated the possible mechanisms by which exposure to a sequentially treated pulp and paper mill effluent affects gene expression in the liver of male and female fathead minnows.
Project description:We evaluated the possible mechanisms by which exposure to a sequentially treated pulp and paper mill effluent affects gene expression in the liver of male and female fathead minnows. Sexually mature fathead minnows were exposed to either river water, which served as our control (C), 10% untreated kraft effluent (UTK), 25% treated kraft effluent (TK) or 100% final effluent (CMO) from a multiprocess pulp and paper mill for 6 days. A total of 4 treatments. Each exposure aquarium consisted of a 42.1 L column that contained individual 5.3 L chambers. Each chamber contained a FHM breeding pair. A total of 3 biological replicates for male and female FHM per treatment were sent for microarray analysis resulting in a total of 24 arrays run as a reference design with a pooled sample of the 6 river water exposed fish serving as the reference sample..
Project description:The federally endangered Okaloosa darter (Etheostoma okaloosae) is found almost exclusively on the Eglin Air Force Base in the Choctawhatchee Bay watershed of Florida. Portions of this limited habitat are threatened with erosion of soils, altered hydrology, and impaired water quality. One stream reach in particular, East Turkey Creek, has demonstrated potential water quality problems including poor invertebrate bioassessment scores (IBI), uncharacteristically high conductivity values, and low numbers of Okaloosa darters. General water quality (dissolved oxygen, specific conductance, pH, temperature, and relative turbidity and primary productivity) was characterized in both the potentially impacted East Turkey Creek and a reference stream (Long Creek). Water quality was assessed during a 30 day exposure using passive samplers for both non-polar and polar effluent parameters. Metal loading in the system was assessed via fish tissue burdens in resident Pteronotropis hypseleotris. Additionally, microarray analysis was performed on gonad and liver tissue from fathead minnows, Pimephales promelas, after 48-h exposures to water collected from the two creeks and brought into the laboratory. Gene expression changes were evident at the site below the influence of a wastewater spray field sited along East Turkey Creek, suggesting that anthropogenic compounds in the effluent waters may have affected both liver and testis function and could be related to account the general decrease in populations of the Okaloosa darter.
Project description:Contaminants of emerging concern (CECs) in treated municipal effluents have the potential to adversely impact exposed organisms prompting elevated public concern. Using transcriptomic tools, we investigated changes in gene expression and cellular pathways in the liver of male fathead minnows (Pimephales promelas) exposed to 5% concentrations of full secondary-treated (HTP) or advanced primary-treated (PL) municipal wastewater effluents containing CECs. Gene expression changes were associated with apical endpoints (plasma vitellogenin and changes in secondary sexual characteristics). Of 32 effluent CECs analyzed, 28 were detected including pharmaceuticals, personal care products, hormones, and industrial compounds. Transcript patterns differed between effluents, however < 10% of these had agreement in the detected response (e.g. transcrips involved in xenobiotic detoxification, oxidative stress and apoptosis) in both effluents. Exposure to PL effluent caused changes in transcript levels of genes involved in metabolic pathways (e.g., lipid transport and steroid metabolism). Exposure to HTP effluent affected transcripts involved in signaling pathways (e.g., focal adhesion assembly and extracellular matrix). Exposure to both effluents produced significantly higher levels of plasma VTG and changes in secondary sexual characteristics (e.g., ovipositor development). Taken together the results suggest, a potential association between some transcriptomic changes and higher biological responses following effluent exposure; and a potential adverse outcome pathway following exposure to complex chemical mixtures containing CECs -. Furthermore, this study identified responses in key genes and pathways not previously implicated in exposure to CECS, , which could be consistent with effluent exposure (e.g., oxidative stress) in addition to other pathway responses specific to the effluent type. This may be useful for assessing the adverse health effects of fish by effluents exposure to CECs.
Project description:Despite recent knowledge of the potential environmental impact that compounds present in municipal wastewater effluents, including contaminants of emerging concern (CECs), may have, the implications of fish exposure to this contaminant mixtures are not completely understood. The effects caused by effluent CECs may be subtle and diverse, thus the need for sensitive and comprehensive tools such as gene expression to detect such responses. In this study, we conducted laboratory exposures that examined plasma concentrations of vitellogenin (VTG), changes in secondary sexual characteristics and gene expression in sexually mature male fathead minnows (Pimephales promelas) exposed to environmentally realistic (0.5%) and higher (5%) concentrations of municipal wastewater effluents. Secondary and primary treated effluents were used. Several of the 32 CECs investigated were detected, including pharmaceuticals, personal care products, hormones, current use pesticides and industrial compounds. The percent of males with detectable levels of VTG was higher in fish exposed to effluent treatments. An increased number of males with changes in secondary sexual characteristics (e.g. development of ovipositors), was observed in fish exposed to 5% effluent treatments. Gene expression data indicated that overall expression patterns were characteristic to each effluent. Higher numbers of differentially expressed genes were observed in fish exposed to primary treated effluent when compared to controls. Differentially expressed genes belonged to several functional categories, including xenobiotic metabolism, estogenicity and energy/metabolism processes. Gene expression data provided information to understand some of the mechanisms behind the effects observed at higher biological levels. To investigate gene expression responses resulting from exposure to POTW effluents, two laboratory experiments were conducted using effluent from San Diego (Point Loma; SD) and Los Angeles (Hyperion; LA). The LA effluent received secondary treatment and the SD effluent received advanced primary treatment. Treatments used during exposures consisted of negative controls (moderately hard water), positive controls (E2), and 0.5% and 5% effluent concentrations. The 0.5% concentration of effluent represented an environmentally realistic exposure level. The 5% effluent concentration represented a higher level at which we expected biological responses. The exposures lasted 14 days. Treatments: EFFHa = 5% primary treated effluent EFFHb = 5% secondary treated effluent EFFLa = 0.5% primary treated effluent E2a = Estradiol, positive control for primary effluent E2b = Estradiol, positive control for secondary effluent CTRLa = Moderately hard water, negative control for primary effluent CTRLb = Moderately hard water, negative control for secondary effluent
Project description:The federally endangered Okaloosa darter (Etheostoma okaloosae) is found almost exclusively on the Eglin Air Force Base in the Choctawhatchee Bay watershed of Florida. Portions of this limited habitat are threatened with erosion of soils, altered hydrology, and impaired water quality. One stream reach in particular, East Turkey Creek, has demonstrated potential water quality problems including poor invertebrate bioassessment scores (IBI), uncharacteristically high conductivity values, and low numbers of Okaloosa darters. General water quality (dissolved oxygen, specific conductance, pH, temperature, and relative turbidity and primary productivity) was characterized in both the potentially impacted East Turkey Creek and a reference stream (Long Creek). Water quality was assessed during a 30 day exposure using passive samplers for both non-polar and polar effluent parameters. Metal loading in the system was assessed via fish tissue burdens in resident Pteronotropis hypseleotris. Additionally, microarray analysis was performed on gonad and liver tissue from fathead minnows, Pimephales promelas, after 48-h exposures to water collected from the two creeks and brought into the laboratory. Gene expression changes were evident at the site below the influence of a wastewater spray field sited along East Turkey Creek, suggesting that anthropogenic compounds in the effluent waters may have affected both liver and testis function and could be related to account the general decrease in populations of the Okaloosa darter. Array hybridizations were performed using a single color design. Four biological replicates consisting of four different individuals were analyzed for each of the treatments (University of Florida control, and each of five sites). Site C was left out of subsequent analysis for publication, due to poor characterization of the site. Two Samples were left out of the normalization/analysis due to QC failure. Therefore, there are only 3 replicates of the "testis, site A water, exposed 48 h." and "liver, site E water, exposed 48 h." groups.
Project description:Metformin, along with its biotransformation product guanylurea, are commonly observed in municipal wastewaters and subsequent surface waters. Previous studies in fish have identified metformin as a potential endocrine active compound but there are inconsistencies in the literature with regard to effects. To further investigate the potential reproductive toxicity of metformin and guanylurea to fish, a series of experiments were performed with reproductively mature fathead minnows (Pimephales promelas). First, explants of mature fathead minnow ovary tissue were exposed to 0.001-100 µM metformin or guanylurea to investigate whether they can directly perturb steroidogenesis. Second, spawning pairs of fathead minnows were exposed to metformin (0.41, 4.1, 41 µg/L) or guanylurea (1.0, 10, 100 µg/L) for 23 d to assess impacts on reproduction. Lastly, male fathead minnows were exposed to 41 µg/L metformin, 100 µg/L guanylurea, or a mixture of both compounds, with samples collected over a 96 h time course to investigate potential impacts to the hepatic transcriptome or metabolome. Neither metformin or guanylurea effected estradiol or testosterone by ovary tissue exposed in vitro. In the 23 d exposure, neither compound significantly impacted transcription of endocrine-related genes in male liver or gonad, circulating steroid concentrations in male or female fish, or fecundity of spawning pairs. In the 96 h time course, 100 µg guanylurea/L elicited more differential gene expression than 41 µg metformin/L , and showed the greatest impacts after 96 h. A number of DEGs up-regulated after 24 h were subsequently down-regulated after 96 h, demonstrating time-dependent impacts of guanylurea on the liver. Overall, metformin and guanylurea did not elicit effects consistent with reproductive toxicity in adult fathead minnows at environmentally relevant concentrations. Where effects were identified using ‘omics approaches, guanylurea induced greater impacts than metformin.