Project description:Oncogenic STAT3 functions are known in various malignancies. We found that STAT3 plays an unexpected tumor suppressive role in KRAS-mutant non-small-cell-lung cancer (NSCLC). In mice, tissue-specific inactivation of Stat3 resulted in increased Kras (G12D)-driven NSCLC initiation and malignant progression leading to markedly reduced survival. Clinically, low STAT3 expression levels correlate with poor survival in human lung adenocarcinoma patients with smoking history. Consistently, KRAS-mutant lung tumors showed reduced STAT3 levels. Mechanistically, we show that STAT3 controls NFκB-induced IL-8-expression by sequestering NFκB in the cytoplasm while IL-8 in turn regulates myeloid tumor infiltration and tumor vascularization thereby promoting tumor progression. These results identify a novel STAT3-NFκB-IL-8 axis in KRAS-mutant NSCLC with therapeutic and prognostic relevance WT: Control lung; KRAS: Lung tumors expressing KRAS G12D; KRAS STAT3 KO: Lung tumors expressing KRAS G12D- STAT3 deficient; tumors of four mice pooled per sample
Project description:Oncogenic STAT3 functions are known in various malignancies. We found that STAT3 plays an unexpected tumor suppressive role in KRAS-mutant non-small-cell-lung cancer (NSCLC). In mice, tissue-specific inactivation of Stat3 resulted in increased Kras (G12D)-driven NSCLC initiation and malignant progression leading to markedly reduced survival. Clinically, low STAT3 expression levels correlate with poor survival in human lung adenocarcinoma patients with smoking history. Consistently, KRAS-mutant lung tumors showed reduced STAT3 levels. Mechanistically, we show that STAT3 controls NFκB-induced IL-8-expression by sequestering NFκB in the cytoplasm while IL-8 in turn regulates myeloid tumor infiltration and tumor vascularization thereby promoting tumor progression. These results identify a novel STAT3-NFκB-IL-8 axis in KRAS-mutant NSCLC with therapeutic and prognostic relevance
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Evaluation of the role of RIP4 in lung adenocarcinoma revealed that RIP4 inhibits STAT3 signaling in vitro and in vivo. Repression of RIP4 enhanced STAT3 signaling activation in KRAS LSL/G12D/wt; p53flox/flox murine tumors. This promoted cancer dedifferentiation through ECM remodeling
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.