Project description:Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development and dog-ownership is associated with a distinct house dust microbial exposure. Here we demonstrate, using murine models, that exposure of mice toM-BM- dog-associated house dust protects against ovalbumin or cockroach allergen mediated airway pathology. Protected animals exhibited significant reductions in the total number of airway T cells, down-regulation of Th2-related airway responses as well as mucin secretion. Following house dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii mediated protection wasM-BM- associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct GI microbiome composition. Moreover the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. The G2 PhyloChip microarray platform (commercially available from Second Genome, Inc.) was used to profile cecal gut bacteria from 29 mice: 7 controls, 5 gavaged with dust from homes with pets, 5 gavaged with dust from homes with no pets, 4 CRA-challenged, 4 gavaged with L. johnsonii, and 4 gavaged with L. johnsonii prior to CRA challenge. The PhyloChip was also used to profile 1 house dust sample collected from a home with dogs
Project description:Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development and dog-ownership is associated with a distinct house dust microbial exposure. Here we demonstrate, using murine models, that exposure of mice toM-BM- dog-associated house dust protects against ovalbumin or cockroach allergen mediated airway pathology. Protected animals exhibited significant reductions in the total number of airway T cells, down-regulation of Th2-related airway responses as well as mucin secretion. Following house dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii mediated protection wasM-BM- associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct GI microbiome composition. Moreover the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. The G2 PhyloChip microarray platform (commercially available from Second Genome, Inc.) was used to profile cecal gut bacteria from 29 mice: 7 controls, 5 gavaged with dust from homes with pets, 5 gavaged with dust from homes with no pets, 4 CRA-challenged, 4 gavaged with L. johnsonii, and 4 gavaged with L. johnsonii prior to CRA challenge. The PhyloChip was also used to profile 1 house dust sample collected from a home with dogs
Project description:Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development and dog-ownership is associated with a distinct house dust microbial exposure. Here we demonstrate, using murine models, that exposure of mice toM-BM- dog-associated house dust protects against ovalbumin or cockroach allergen mediated airway pathology. Protected animals exhibited significant reductions in the total number of airway T cells, down-regulation of Th2-related airway responses as well as mucin secretion. Following house dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii mediated protection wasM-BM- associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct GI microbiome composition. Moreover the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. The G2 PhyloChip microarray platform (commercially available from Second Genome, Inc.) was used to profile cecal gut bacteria from 29 mice: 7 controls, 5 gavaged with dust from homes with pets, 5 gavaged with dust from homes with no pets, 4 CRA-challenged, 4 gavaged with L. johnsonii, and 4 gavaged with L. johnsonii prior to CRA challenge. The PhyloChip was also used to profile 1 house dust sample collected from a home with dogs
Project description:Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development and dog-ownership is associated with a distinct house dust microbial exposure. Here we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen mediated airway pathology. Protected animals exhibited significant reductions in the total number of airway T cells, down-regulation of Th2-related airway responses as well as mucin secretion. Following house dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii mediated protection was associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct GI microbiome composition. Moreover the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.
Project description:Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development and dog-ownership is associated with a distinct house dust microbial exposure. Here we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen mediated airway pathology. Protected animals exhibited significant reductions in the total number of airway T cells, down-regulation of Th2-related airway responses as well as mucin secretion. Following house dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii mediated protection was associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct GI microbiome composition. Moreover the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.
Project description:Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development and dog-ownership is associated with a distinct house dust microbial exposure. Here we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen mediated airway pathology. Protected animals exhibited significant reductions in the total number of airway T cells, down-regulation of Th2-related airway responses as well as mucin secretion. Following house dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii mediated protection was associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct GI microbiome composition. Moreover the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.
Project description:Using mouse lung resident conventional CD11b+ dendritic cells (CD11b+ cDCs) in the context of house-dust mite (HDM)-driven allergic airway sensitization as a model, we aimed here to identify transcriptional events regulating the pro-Th2 activity of cDCs. We used microarray analyses to identify genes differentially expressed by lung CD11b+ conventional dendritic cells in response to house dust mite allergens in wild-type and Irf3-deficient mice