ABSTRACT: Infection of the plant parasitic nematode Meloidogyne hapla by the nematode-trapping fungus Monacrosporium cionopagum. Transcriptome or Gene expression
Project description:Infection of the plant parasitic nematode Meloidogyne hapla by the nematode-trapping fungus Arthrobotrys dactyloides. Transcriptome or Gene expression
| PRJNA230433 | ENA
Project description:Infection of the plant parasitic nematode Heterodera schachtii by the nematode-trapping fungus Arthrobotrys oligospora. Transcriptome or Gene expression
| PRJNA230446 | ENA
Project description:Infection of the plant parasitic nematode Heterodera schachtii by the nematode-trapping fungus Monacrosporium cionopagum. Transcriptome or Gene expression
Project description:Biotrophic plant pathogens have evolved sophisticated strategies to manipulate their host. They derive all of their nutrients from living plant tissues, by making intimate contact with their host while avoiding a resistance response. Rice is one of the most important crop plants worldwide and an excellent model system for studying monocotyledonous plants. Estimates of annual yield losses due to plant-parasitic nematodes on this crop range from 10 to 25% worldwide. One of the agronomically most important nematodes attacking rice is the rice root knot nematode Meloidogyne graminicola. Attack of plant roots by sedentary plant parasitic nematodes, like the root knot nematodes (RKN; Meloidogyne spp.) involves the development of specialized feeding cells in the vascular tissue. The second stage juvenile of the RKN punctures selected vascular cells with its stylet, injects pharyngeal secretions, and this ultimately leads to the reorganisation of these cells into typical feeding structures called giant cells (GCs), from which the nematode feeds for the remainder of its sedentary life cycle (Gheysen & Mitchum, 2011). Morphological and physiological reprogramming of the initial feeding cell leads to nucleus enlargement, proliferation of mitochondria and plastids, metabolic activation, cell cycle alterations and cell wall changes (Gheysen and Mitchum, 2011). The hyperplasia and hypertrophy of the surrounding cells leads to the formation of a root gall, which is typically formed at the root tips in the case of the rice RKN M. graminicola. In comparison with other RKN, M. graminicola has a very fast life cycle, with swelling of the root tips observed as early as 1 day after infection (dai). At 3 dai, terminal hook-like galls are clearly visible (Bridge et al., 2005). After 3 moults the nematodes are mature, around 10 dai. The M. graminicola females lay their eggs inside the galls, while most other RKN deposit egg masses at the gall surface, and hatched juveniles can reinfect the same or adjacent roots. In well-drained soil at 22-29 degrees C the life cycle of M. graminicola is completed in 19 days. 2 biological replicates of nematode infected giant cells and control vascular cells were sampled at two time points: 7 and 14 dai
Project description:We compared the gene expression of wild-type Col-0 and a T-DNA mutant SALK_116381C (opr2-1). We either infected or mock-infected the plants with the root knot nematode Meloidogyne incognita and measured the root transcriptome after 0, 1, 4, and 7 days post infection using RNA-seq. The aim of the experiment was to determine whether opr2-1 affected gene expression patterns induced by nematode infection.
Project description:Magnaporthe oryzae (rice blast) and the root-knot nematode Meloidogyne graminicola are causing two of the most important pathogenic diseases jeopardizing rice production. Here, we show that root-knot nematode infestation on rice roots leads to important above-ground changes in plant immunity gene expression, which is correlated with significantly enhanced susceptibility to blast disease.