Project description:We investigated the innate immune system in the SOD1 ALS model. We found that splenic Ly6CHi monocytes were activated and their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We found a decrease in resident microglia in the spinal cord with disease progression. Two months prior to disease onset, splenic Ly6CHi monocytes had an M1 signature which included increased CCR2. At one month prior to disease onset, microglia expressed increased CCL2 and other chemotaxis-associated molecules. Microglia derived from the spinal cord of SOD1 mice recruited Ly6C+ monocytes to the CNS. Treatment with anti-Ly6C mAb modulated the Ly6CHi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss and extended survival. In humans with ALS, CD14+/CD16- monocytes (analogue of Ly6CHi monocytes) exhibited an ALS specific microRNA inflammatory signature similar to that observed in the SOD1 mouse providing a direct link between the animal model and the human disease. Thus, the SOD1-like profile of monocytes in ALS subjects may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach. This study used the NanoString nCounter hybridization system and nCounter miRNA expression assays to identify and quantitate miRNAs in blood CD14+CD16- monocytes from ALS, MS and HC subjects Total RNA was isolated from FACS sorted CD14+CD16- blood-derived monocytes from sporadic ALS (n=8), MS (n=8) and HC (n=8) subjects. RNA was profiled using the NanoString nCounter miRNA expression assay
Project description:We investigated the innate immune system in the SOD1 ALS model. We found that splenic Ly6CHi monocytes were activated and their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We found a decrease in resident microglia in the spinal cord with disease progression. Two months prior to disease onset, splenic Ly6CHi monocytes had an M1 signature which included increased CCR2. At one month prior to disease onset, microglia expressed increased CCL2 and other chemotaxis-associated molecules. Microglia derived from the spinal cord of SOD1 mice recruited Ly6C+ monocytes to the CNS. Treatment with anti-Ly6C mAb modulated the Ly6CHi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss and extended survival. In humans with ALS, CD14+/CD16- monocytes (analogue of Ly6CHi monocytes) exhibited an ALS specific microRNA inflammatory signature similar to that observed in the SOD1 mouse providing a direct link between the animal model and the human disease. Thus, the SOD1-like profile of monocytes in ALS subjects may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach This study used the NanoString nCounter hybridization system and the Nanostring GX Human Immunology and Nanostring Human Inflammation assays to identify and quantitate immune-related genes in blood CD14+CD16- monocytes from ALS, MS and HC subjects Total RNA was isolated from FACS sorted CD14+CD16- blood-derived monocytes from sporadic sALS (n=10), fALS (n=4) and HC (n=10) subjects. RNA was profiled using the Nanostring GX Human Immunology and Nanostring Human Inflammation assays
Project description:Purpose: We purified spinal cord microglia utilizing percoll gradients and magnetic beads, followed by transcriptome profiling (RNA-seq) to define microglia expression profiles against other neural, immune cell-types. We next observed how the microglial transcriptomes change during activation in the SOD1-G93A mouse model of motor neuron degeneration at 3 time points. We also compared these profiles with that induced by LPS injection. Results and conclusions: ALS microglia were found to differ substantially from those activated by LPS and from M1/M2 macrophages by comparison with published datasets. These ALS microglia showing substantial induction of a neurodegeneration-tailored phenotype, with induction of lysosomal, RNA splicing, and Alzheimer's disease pathway genes. Overall they express a mixture of neuroprotective and neurotoxic factors during activation in ALS mice, showing that neuro-immune activation in the spinal cord is a double-edged sword. We also detected the transcriptional nature of surface marker expression in microglia (CD11b, CD86, CD11c), and substantial T-cell microglia cross-talk using correlative microglia transcriptome/FACS analysis. 42 total RNA samples from purified spinal cord microglia were subjected to paired-end RNA-sequencing. Parallel flow cytometry data was collected from the same spinal cords.
Project description:We investigated the innate immune system in the SOD1 ALS model. We found that splenic Ly6CHi monocytes were activated and their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We found a decrease in resident microglia in the spinal cord with disease progression. Two months prior to disease onset, splenic Ly6CHi monocytes had an M1 signature which included increased CCR2. At one month prior to disease onset, microglia expressed increased CCL2 and other chemotaxis-associated molecules. Microglia derived from the spinal cord of SOD1 mice recruited Ly6C+ monocytes to the CNS. Treatment with anti-Ly6C mAb modulated the Ly6CHi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss and extended survival. In humans with ALS, CD14+/CD16- monocytes (analogue of Ly6CHi monocytes) exhibited an ALS specific microRNA inflammatory signature similar to that observed in the SOD1 mouse providing a direct link between the animal model and the human disease. Thus, the SOD1-like profile of monocytes in ALS subjects may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach. This study used the NanoString nCounter hybridization system and nCounter miRNA expression assays to identify and quantitate miRNAs in blood CD14+CD16- monocytes from ALS, MS and HC subjects
Project description:We investigated the innate immune system in the SOD1 ALS model. We found that splenic Ly6CHi monocytes were activated and their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We found a decrease in resident microglia in the spinal cord with disease progression. Two months prior to disease onset, splenic Ly6CHi monocytes had an M1 signature which included increased CCR2. At one month prior to disease onset, microglia expressed increased CCL2 and other chemotaxis-associated molecules. Microglia derived from the spinal cord of SOD1 mice recruited Ly6C+ monocytes to the CNS. Treatment with anti-Ly6C mAb modulated the Ly6CHi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss and extended survival. In humans with ALS, CD14+/CD16- monocytes (analogue of Ly6CHi monocytes) exhibited an ALS specific microRNA inflammatory signature similar to that observed in the SOD1 mouse providing a direct link between the animal model and the human disease. Thus, the SOD1-like profile of monocytes in ALS subjects may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach This study used the NanoString nCounter hybridization system and the Nanostring GX Human Immunology and Nanostring Human Inflammation assays to identify and quantitate immune-related genes in blood CD14+CD16- monocytes from ALS, MS and HC subjects
Project description:We investigated the gene expression profile of monocyte-derived macrophages and microglia following spinal cord injury. Moreover, we investigated the gene expression profole of M-CSF induced macrophages and new-born derived microglia following TGFb1 treatment. monocyte-derived macrophages and microglia following spinal cord injury M-CSF induced macrophages and new-born derived microglia following TGFb1 treatment
Project description:Purpose: We purified whole brain microglia of MFP2 knockout mice and control mice utilizing percoll gradient and FACS sorting, followed by microarray analysis to define the molecular changes in MFP2 knockout mice at the endstage of the disease. We compared the microglia transcriptome of Mfp2-/- microglia to that of SOD1-G93A microglia isolated from spinal cord to define the microglia signature associated with a non-neurodegenerative environment. Results and conclusions: Mfp2-/- microglia acquire an activation state characterized by activation of mammalian target of rapamycin (mTOR). In addition, activated microglia display reduced expression of genes that are normally highly expressed by surveillant microglia in steady-state conditions. The immunological profile of is heterogeneous and encompasses upregulation of both pro- and anti-inflammatory genes. In contrast to the neurodegeneration-specific microglia profile in SOD1-G93A mice, Mfp2-/- microglia do not induce genes associated with phagocytosis, lysosomal activation and neurotoxicity. 4 MFP2 knockout and 4 control samples were subjected to microarray analysis.
Project description:Burgeoning evidence highlights seminal roles for microglia in the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). The receptor for advanced glycation end products (RAGE) binds ligands relevant to ALS that accumulate in the diseased spinal cord and RAGE has been previously implicated in the progression of ALS pathology. We generated a novel mouse model to temporally delete Ager from microglia in the murine SOD1G93A model of ALS. Microglia Ager deficient SOD1G93A mice and controls were examined for changes in survival, motor function, gliosis, motor neuron numbers, and transcriptomic analyses of lumbar spinal cord. Furthermore, we examined bulk-RNA-sequencing transcriptomic analyses of human ALS cervical spinal cord. Transcriptomic analysis of human cervical spinal cord reveals a range of AGER expression in ALS patients, which was negatively correlated with age at disease onset and death or tracheostomy. The degree of AGER expression related to differential expression of pathways involved in extracellular matrix, lipid metabolism, and intercellular communication. Microglia display increased RAGE immunoreactivity in the spinal cords of high AGER expressing patients and in the SOD1G93A murine model of ALS vs. respective controls. We demonstrate that microglia Ager deletion at the age of symptomatic onset, day 90, in SOD1G93A mice extends survival in male but not female mice. Critically, many of the pathways identified in human ALS patients that accompanied increased AGER expression were significantly ameliorated by microglia Ager deletion in male SOD1G93A mice. Our results indicate that microglia RAGE disrupts communications with cell types including astrocytes and neurons, intercellular communication pathways that divert microglia from a homeostatic to an inflammatory and tissue-injurious program. In totality, microglia RAGE contributes to the progression of SOD1G93A murine pathology in male mice and may be relevant in human disease.