Project description:Accelerated brain development is a unique feature of the human species. Not only the size but also morphology, in particular the connections between frontal cortex and basal ganglia distinguish the human brain from great apes and other primates. Recent findings suggest that structural features which may be important for language acquisition are influenced by FOXP2, key regulator of CNTNAP2. CNTNAP2 is one of the largest genes in the chimpanzee genome, encompassing 2.5 Mb. It encodes a neurexin with essential roles in the vertebrate nervous system. The aim of our study was to compare the methylation patterns of CNTNAP2 in human and chimpanzee brains, assuming that epigenetic regulation is essential for brain development and human language abilities. To this end, we designed a NimbleGen tiling array covering the entire chimpanzee CNTNAP2 gene plus 0.1 Mb up- and downstream flanking sequence with an average resolution of 13 bp. Methylated DNA ImmunoPreciptation (MeDIP) was used to enrich cytosine-methylated DNA fragments for downstream analysis with high-resolution tiling arrays. MeDIP-based CNTNAP2 methylation profiling
Project description:Accelerated brain development is a unique feature of the human species. Not only the size but also morphology, in particular the connections between frontal cortex and basal ganglia distinguish the human brain from great apes and other primates. Recent findings suggest that structural features which may be important for language acquisition are influenced by FOXP2, key regulator of CNTNAP2. CNTNAP2 is one of the largest genes in the chimpanzee genome, encompassing 2.5 Mb. It encodes a neurexin with essential roles in the vertebrate nervous system. The aim of our study was to compare the methylation patterns of CNTNAP2 in human and chimpanzee brains, assuming that epigenetic regulation is essential for brain development and human language abilities. To this end, we designed a NimbleGen tiling array covering the entire chimpanzee CNTNAP2 gene plus 0.1 Mb up- and downstream flanking sequence with an average resolution of 13 bp. Methylated DNA ImmunoPreciptation (MeDIP) was used to enrich cytosine-methylated DNA fragments for downstream analysis with high-resolution tiling arrays.
Project description:Accelerated brain development is a unique feature of the human species. Not only the size but also morphology, in particular the connections between frontal cortex and basal ganglia distinguish the human brain from great apes and other primates. Recent findings suggest that structural features which may be important for language acquisition are influenced by FOXP2, key regulator of CNTNAP2. CNTNAP2 is one of the largest genes in the human genome, encompassing 2.3 Mb. It encodes a neurexin with essential roles in the vertebrate nervous system. The aim of our study was to compare the methylation patterns of CNTNAP2 in human and chimpanzee brains, assuming that epigenetic regulation is essential for brain development and human language abilities. To this end, we designed a NimbleGen tiling array covering the entire human CNTNAP2 gene plus 0.1 Mb up- and downstream flanking sequence with an average resolution of 13 bp. Methylated DNA ImmunoPreciptation (MeDIP) was used to enrich cytosine-methylated DNA fragments for downstream analysis with high-resolution tiling arrays. MeDIP-based CNTNAP2 methylation profiling
Project description:Accelerated brain development is a unique feature of the human species. Not only the size but also morphology, in particular the connections between frontal cortex and basal ganglia distinguish the human brain from great apes and other primates. Recent findings suggest that structural features which may be important for language acquisition are influenced by FOXP2, key regulator of CNTNAP2. CNTNAP2 is one of the largest genes in the human genome, encompassing 2.3 Mb. It encodes a neurexin with essential roles in the vertebrate nervous system. The aim of our study was to compare the methylation patterns of CNTNAP2 in human and chimpanzee brains, assuming that epigenetic regulation is essential for brain development and human language abilities. To this end, we designed a NimbleGen tiling array covering the entire human CNTNAP2 gene plus 0.1 Mb up- and downstream flanking sequence with an average resolution of 13 bp. Methylated DNA ImmunoPreciptation (MeDIP) was used to enrich cytosine-methylated DNA fragments for downstream analysis with high-resolution tiling arrays.