Project description:The trade-off between growth and immunity is crucial for survival in plants. An antagonistic interaction has been observed between the growth-promoting hormone brassinosteroid and pathogen associated molecular pattern (PAMP) signals, which induce immunity but inhibit growth, however the underlying molecular mechanism has remained unclear. The PRE-IBH1-HBI1 triple helix-loop-helix/basic helix-loop-helix (HLH/bHLH) cascade has been shown to mediate growth responses to several hormonal and environmental signals, but its downstream targets and role in immunity remain unknown. Here, we performed genome-wide analyses of HBI1 target genes in Arabidopsis. The results show that HBI1 regulates a set of genes that largely overlaps with targets of PIFs, but displays both similar and unique transcriptional activities compared to PIFs, supporting a role in fine-tuning the network through cooperation and antagonism with other DNA-binding factors of the network. Furthermore, HBI1 also negatively regulates a subset of defense response genes. Two PAMPs, flagellin and elongation factor, repressed HBI1 expression, whereas overexpression of HBI1 reduced the PAMP-induced growth inhibition, defense gene expression, reactive oxygen species (ROS) production, and flg22-induced resistance to Pseudomonas syringae pathovar tomato DC3000. These data indicate that HBI1 is a node for crosstalk between hormone and immune pathways. This study demonstrates that the PRE-IBH1-HBI1 module integrates hormone and pathogen signals, and thus plays a central role in the balance between growth and immunity in plants. Genome wide analysis the HBI1 binding target
Project description:The trade-off between growth and immunity is crucial for survival in plants. An antagonistic interaction has been observed between the growth-promoting hormone brassinosteroid and pathogen associated molecular pattern (PAMP) signals, which induce immunity but inhibit growth, however the underlying molecular mechanism has remained unclear. The PRE-IBH1-HBI1 triple helix-loop-helix/basic helix-loop-helix (HLH/bHLH) cascade has been shown to mediate growth responses to several hormonal and environmental signals, but its downstream targets and role in immunity remain unknown. Here, we performed genome-wide analyses of HBI1 target genes in Arabidopsis. The results show that HBI1 regulates a set of genes that largely overlaps with targets of PIFs, but displays both similar and unique transcriptional activities compared to PIFs, supporting a role in fine-tuning the network through cooperation and antagonism with other DNA-binding factors of the network. Furthermore, HBI1 also negatively regulates a subset of defense response genes. Two PAMPs, flagellin and elongation factor, repressed HBI1 expression, whereas overexpression of HBI1 reduced the PAMP-induced growth inhibition, defense gene expression, reactive oxygen species (ROS) production, and flg22-induced resistance to Pseudomonas syringae pathovar tomato DC3000. These data indicate that HBI1 is a node for crosstalk between hormone and immune pathways. This study demonstrates that the PRE-IBH1-HBI1 module integrates hormone and pathogen signals, and thus plays a central role in the balance between growth and immunity in plants. Compare the transcriptome of HBI1-Ox and wild type.
Project description:Plant growth is coordinately regulated by environmental and hormonal signals. Brassinosteroid (BR) plays essential roles in growth regulation by light and temperature, but the interactions between BR and these environmental signals remain poorly understood at the molecular level. Here, we show that direct interaction between the dark- and heat-activated transcription factor phytochrome-interacting factor4 (PIF4) and the BR-activated transcription factor BZR1 integrates the hormonal and environmental signals. BZR1 and PIF4 interact with each other in vitro and in vivo, bind to nearly two thousand common target genes, and synergistically regulate many of these target genes, including the PRE family HLH factors required for promoting cell elongation. Genetic analysis indicates that BZR1 and PIFs are interdependent in promoting cell elongation in response to BR, darkness, or heat. These results show that the BZR1-PIF4 interaction controls a core transcription network, allowing plant growth co-regulation by the steroid and environmental signals. Genome-wide identification of PIF4 binding sites in etiolated Arabidopsis seedlings.
Project description:Plant growth is coordinately regulated by environmental and hormonal signals. Brassinosteroid (BR) plays essential roles in growth regulation by light and temperature, but the interactions between BR and these environmental signals remain poorly understood at the molecular level. Here, we show that direct interaction between the dark- and heat-activated transcription factor phytochrome-interacting factor4 (PIF4) and the BR-activated transcription factor BZR1 integrates the hormonal and environmental signals. BZR1 and PIF4 interact with each other in vitro and in vivo, bind to nearly two thousand common target genes, and synergistically regulate many of these target genes, including the PRE family HLH factors required for promoting cell elongation. Genetic analysis indicates that BZR1 and PIFs are interdependent in promoting cell elongation in response to BR, darkness, or heat. These results show that the BZR1-PIF4 interaction controls a core transcription network, allowing plant growth co-regulation by the steroid and environmental signals. RNA-Seq for Col-0, bzr1-1D, pifq and pifq;bzr1-1D seedlings grown on BRZ-containing medium in the dark.
Project description:Plant growth is coordinately regulated by environmental and hormonal signals. Brassinosteroid (BR) plays essential roles in growth regulation by light and temperature, but the interactions between BR and these environmental signals remain poorly understood at the molecular level. Here, we show that direct interaction between the dark- and heat-activated transcription factor phytochrome-interacting factor4 (PIF4) and the BR-activated transcription factor BZR1 integrates the hormonal and environmental signals. BZR1 and PIF4 interact with each other in vitro and in vivo, bind to nearly two thousand common target genes, and synergistically regulate many of these target genes, including the PRE family HLH factors required for promoting cell elongation. Genetic analysis indicates that BZR1 and PIFs are interdependent in promoting cell elongation in response to BR, darkness, or heat. These results show that the BZR1-PIF4 interaction controls a core transcription network, allowing plant growth co-regulation by the steroid and environmental signals.
Project description:Plant growth is coordinately regulated by environmental and hormonal signals. Brassinosteroid (BR) plays essential roles in growth regulation by light and temperature, but the interactions between BR and these environmental signals remain poorly understood at the molecular level. Here, we show that direct interaction between the dark- and heat-activated transcription factor phytochrome-interacting factor4 (PIF4) and the BR-activated transcription factor BZR1 integrates the hormonal and environmental signals. BZR1 and PIF4 interact with each other in vitro and in vivo, bind to nearly two thousand common target genes, and synergistically regulate many of these target genes, including the PRE family HLH factors required for promoting cell elongation. Genetic analysis indicates that BZR1 and PIFs are interdependent in promoting cell elongation in response to BR, darkness, or heat. These results show that the BZR1-PIF4 interaction controls a core transcription network, allowing plant growth co-regulation by the steroid and environmental signals.
Project description:The trade-off between growth and immunity is crucial for survival in plants. An antagonistic interaction has been observed between the growth-promoting hormone brassinosteroid and pathogen associated molecular pattern (PAMP) signals, which induce immunity but inhibit growth, however the underlying molecular mechanism has remained unclear. The PRE-IBH1-HBI1 triple helix-loop-helix/basic helix-loop-helix (HLH/bHLH) cascade has been shown to mediate growth responses to several hormonal and environmental signals, but its downstream targets and role in immunity remain unknown. Here, we performed genome-wide analyses of HBI1 target genes in Arabidopsis. The results show that HBI1 regulates a set of genes that largely overlaps with targets of PIFs, but displays both similar and unique transcriptional activities compared to PIFs, supporting a role in fine-tuning the network through cooperation and antagonism with other DNA-binding factors of the network. Furthermore, HBI1 also negatively regulates a subset of defense response genes. Two PAMPs, flagellin and elongation factor, repressed HBI1 expression, whereas overexpression of HBI1 reduced the PAMP-induced growth inhibition, defense gene expression, reactive oxygen species (ROS) production, and flg22-induced resistance to Pseudomonas syringae pathovar tomato DC3000. These data indicate that HBI1 is a node for crosstalk between hormone and immune pathways. This study demonstrates that the PRE-IBH1-HBI1 module integrates hormone and pathogen signals, and thus plays a central role in the balance between growth and immunity in plants.
Project description:The trade-off between growth and immunity is crucial for survival in plants. An antagonistic interaction has been observed between the growth-promoting hormone brassinosteroid and pathogen associated molecular pattern (PAMP) signals, which induce immunity but inhibit growth, however the underlying molecular mechanism has remained unclear. The PRE-IBH1-HBI1 triple helix-loop-helix/basic helix-loop-helix (HLH/bHLH) cascade has been shown to mediate growth responses to several hormonal and environmental signals, but its downstream targets and role in immunity remain unknown. Here, we performed genome-wide analyses of HBI1 target genes in Arabidopsis. The results show that HBI1 regulates a set of genes that largely overlaps with targets of PIFs, but displays both similar and unique transcriptional activities compared to PIFs, supporting a role in fine-tuning the network through cooperation and antagonism with other DNA-binding factors of the network. Furthermore, HBI1 also negatively regulates a subset of defense response genes. Two PAMPs, flagellin and elongation factor, repressed HBI1 expression, whereas overexpression of HBI1 reduced the PAMP-induced growth inhibition, defense gene expression, reactive oxygen species (ROS) production, and flg22-induced resistance to Pseudomonas syringae pathovar tomato DC3000. These data indicate that HBI1 is a node for crosstalk between hormone and immune pathways. This study demonstrates that the PRE-IBH1-HBI1 module integrates hormone and pathogen signals, and thus plays a central role in the balance between growth and immunity in plants.