Project description:miRNAs are 19-25 nucleotides long small RNAs now well-known for their regulatory roles in the development and diseases through post-transcriptional and translational controls in a wide range of species. Mammalian hibernation is a physiological process involving dramatic metabolic suppression and cellular reorganization, during which miRNAs may play an important role. We systematically analyzed the miRNAs in the liver of an extreme hibernating species, arctic ground squirrels (Spermophilus parryii), during two stages of hibernation compared to non-hibernating animals by massively parallel Illumina sequencing technology. We identified more than 200 ground squirrel miRNAs including novel miRNAs specific to ground squirrel and a fast-evolving miRNA cluster that also showed significant differential expression during hibernation. Integrating with Agilent miRNA microarray and Real-time PCR results, we identified that mir-211, mir-378, mir-184, mir-200a, and mir-320 were significantly under-expressed during hibernation, whereas mir-144, mir-486, mir-451, mir-142-5p, and mir-1 were over-expressed. Analyses of the their target genes suggested that these miRNAs could play an important role to suppress tumor progression and cell growth during hibernation. Investigation of microRNA changes in arctic ground squirrel livers during Early Arousal(EA), Late Topor(LT), and Post-Reproduction(PR) stages.
Project description:miRNAs are 19-25 nucleotides long small RNAs now well-known for their regulatory roles in the development and diseases through post-transcriptional and translational controls in a wide range of species. Mammalian hibernation is a physiological process involving dramatic metabolic suppression and cellular reorganization, during which miRNAs may play an important role. We systematically analyzed the miRNAs in the liver of an extreme hibernating species, arctic ground squirrels (Spermophilus parryii), during two stages of hibernation compared to non-hibernating animals by massively parallel Illumina sequencing technology. We identified more than 200 ground squirrel miRNAs including novel miRNAs specific to ground squirrel and a fast-evolving miRNA cluster that also showed significant differential expression during hibernation. Integrating with Agilent miRNA microarray and Real-time PCR results, we identified that mir-211, mir-378, mir-184, mir-200a, and mir-320 were significantly under-expressed during hibernation, whereas mir-144, mir-486, mir-451, mir-142-5p, and mir-1 were over-expressed. Analyses of the their target genes suggested that these miRNAs could play an important role to suppress tumor progression and cell growth during hibernation. Three total RNA pools from arctic ground squirrel livers in Early Arousal(EA), Late Topor(LT), and Post-Reproduction(PR) stages were hybridized to three Agilent mouse miRNA microarrays.
Project description:Identify shifts in gene expression relevant to torpor phenotypes and recovery following torpor in five tissues of the 13-lined ground squirrel. Sampled tissues and time points overlap with prior hibernation RNA-seq studies in 13-lined ground squirrel and other species, allowing for the analysis of conserved gene expression patterns in torpor.
Project description:Hibernation is an energy-saving strategy adopted by a wide range of mammals to survive highly seasonal or unpredictable environments. Arctic ground squirrels living in Alaska provide an extreme example, with 6-9 months long hibernation seasons when body temperature alternates between levels near 0 C during torpor and 37 C during arousal episodes. Heat production during hibernation is provided, in part, by non-shivering thermogenesis that occurs in large deposits of brown adipose tissue (BAT). BAT is active at tissue temperatures from 0 to 37 C during rewarming and continuously at near 0 C during torpor in subfreezing conditions. Despite its crucial role in hibernation, the global gene expression patterns in BAT during hibernation compared to the non-hibernation season remain largely unknown. We report a large-scale study of differential gene expression in BAT between winter hibernating and summer active arctic ground squirrels using mouse microarrays. Selected differentially expressed genes identified on the arrays were validated by quantitative real-time PCR using ground squirrel specific primers. Our results show that the mRNA levels of the genes involved in nearly every step of the biochemical pathway leading to non-shivering thermogenesis are significantly increased in BAT during hibernation, whereas those of genes involved in protein biosynthesis are significantly decreased compared to the summer active animals in August. The differentially expressed genes also include those involved in adipose differentiation, substrate transport, and structure remodeling, which may enhance thermogenesis at low tissue temperatures in BAT. Keywords: hibernating animals vs. summer active animals