Project description:Snai1 is a master factor of epithelial to mesenchymal transitioin (EMT), however, its role in embryonic stem cell (ESC) differentiation and lineage commitment remains undefined. We used microarrays to compare the global programme of gene expression between control and Snai1 knockout ESCs-derived EB and teratoma. For EBs, control and Snai1 knockout ESCs were cultured as embryoid bodies in spotaneous differentiation media, RNA of 5 days EBs were collected for Affymetrix microarrays. For teratomas, control and Snai1 knockout ESCs were injected into nude mice to form teratomas. RNA of 6 weeks were collected for Affymetrix microarrays.
Project description:Snai1 is a master factor of epithelial to mesenchymal transitioin (EMT), however, its role in embryonic stem cell (ESC) differentiation and lineage commitment remains undefined. We used microarrays to compare the global programme of gene expression between control and Snai1 knockout Flk1+ and Flk1- cells sorted from 4 day EBs. Control and Snai1 knockout ESCs were cultured as embryoid bodies in spotaneous differentiation media, 4 days EBs were dissociated and sorted by anti-Flk1 antibody to separated Flk1+ and Flk1- cells, total RNA were collected for Affymetrix microarrays
Project description:Snai1 is a master factor of epithelial to mesenchymal transitioin (EMT), however, its role in embryonic stem cell (ESC) differentiation and lineage commitment remains undefined. We used microarrays to compare the global programme of gene expression between control and Snai1 knockout ESCs-derived EB and teratoma.
Project description:Lipid metabolism is recognized as a key process for stem cell maintenance and differentiation but genetic factors that instruct stem cell function by influencing lipid metabolism remain to be delineated. Here we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout embryonic stem cells (ESCs) exhibit differentiation failure and knockdown of the planarian orthologue, Smed-exoc3, abrogates in vivo differentiation of somatic stem cells, tissue homeostasis, and regeneration. Tnfaip2 deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of Vimentin (Vim) – a known inducer of LD formation. Knockdown of Vim and Tnfaip2 act epistatically in enhancing cellular reprogramming of mouse fibroblasts. Similarly, planarians devoid of Smed-exoc3 displayed acute loss of TAGs. Supplementation of palmitic acid (PA) and palmitoyl-L-carnitine (a mitochondrial carrier of PA) restores the differentiation capacity of Tnfaip2 deficient ESCs as well as stem cell differentiation and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel pathway, which is essential for stem cell differentiation and organ maintenance by instructing lipid metabolism.
Project description:Lipid metabolism is recognized as a key process for stem cell maintenance and differentiation but genetic factors that instruct stem cell function by influencing lipid metabolism remain to be delineated. Here we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout embryonic stem cells (ESCs) exhibit differentiation failure and knockdown of the planarian orthologue, Smed-exoc3, abrogates in vivo differentiation of somatic stem cells, tissue homeostasis, and regeneration. Tnfaip2 deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of Vimentin (Vim) – a known inducer of LD formation. Knockdown of Vim and Tnfaip2 act epistatically in enhancing cellular reprogramming of mouse fibroblasts. Similarly, planarians devoid of Smed-exoc3 displayed acute loss of TAGs. Supplementation of palmitic acid (PA) and palmitoyl-L-carnitine (a mitochondrial carrier of PA) restores the differentiation capacity of Tnfaip2 deficient ESCs as well as stem cell differentiation and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel pathway, which is essential for stem cell differentiation and organ maintenance by instructing lipid metabolism.
Project description:Snail1 is a master epithelial-mesenchymal trisition (EMT) factor but its role in ESC maintenance is unknown. We used microarrays to compare the global gene expression between control and Snai1 knockout ESCs. RNA extracted from control and Snai1 knockout ESCs were hybridizated on Affymetrix microarrays.