Project description:The global transcriptional profile of novel T7-like Pseudomonas aeruginosa phage LUZ100 was obtained using the long read RNA sequencing technique ONT-cappable-seq. Using this approach we obtained a comprehensive genome-wide map of viral transcription start sites, terminators and transcription units and gained new insights in the molecular mechanisms of transcriptional regulation of T7-like temperate phages.
Project description:Purpose: The purpose of this study was to investigate the effect of quorum sensing on phage infection. Methods: We constructed the lasR gene knockout strain of Pseudomonas aeruginosa PAO1 and performed transcriptome sequencing.
Project description:The phage protein gp70.1 encoded by Pseudomonas aerugonosa phage PaP3 was toxic to both P. aerugonosa and E. coli, microarry analysis was used to investigate the effects of gp70.1 on P. aerugonosa with three periods of bacterial growth.
Project description:The global transcriptional profile of Pseudomonas chlororaphis infecting phage 201f2-1 was obtained using the long-read RNA sequencing technique ONT-cappable-seq. this resulted in a comprehensive genome-wide map of viral transcription start and termination sites. In addition, we were able to identify different transcription units and gained new insights in the molecular mechanisms of of transcriptional regulation of members of the Phikzvirus.
Project description:Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pseudomonas syringae pathovar phaseolicola strains, we performed expression analysis of super and non piliated strains of Pseudomonas syringae to determine the genetic cause of resistance to viral infection.
Project description:Differential RNA-seq (dRNA-seq) was performed on Pseudomonas aeruginosa alone or shortly after iinfection with the jumbo phage phiKZ
Project description:Quorum sensing (QS) is the cell density-dependent virulence factor regulator in Pseudomonas aeruginosa. Here, we elucidate PIT2, a phage-encoded inhibitor of the QS regulator LasR, derived from the lytic Pseudomonas phage LMA2. PIT2 inhibits the effectors PrpL and LasA of the type 2 secretion system of P. aeruginosa and attenuates bacterial virulence towards HeLa cells and in Galleria mellonella. Using RNAseq-based differential gene expression analysis, the effect of PIT2 on the LasR regulatory network was revealed. Moreover, the specific interaction between LasR and PIT2 was determined. These data expand our knowledge on phage-encoded modulators of the bacterial metabolism, as this examples an anti-virulence protein derived from a lytic phage. From an applied perspective, this phage protein reveals and exploits an interesting anti-virulence target in P. aeruginosa. As such, it lays the foundation for a new phage-inspired anti-virulence strategy to combat multidrug resistant pathogens and opens the door for SynBio applications.