Project description:The cytokine Oncostatin M (OSM) promotes cancer progression by acting as central node for multicellular interactions between cancer cells and surrounding stromal cells. OSM is mainly secreted by myeloid cells and the oncostatin M receptor (OSMR) is expressed by cancer cells and cancer associated fibroblasts (CAFs), among others. To understand the effect of OSM in CAFs, a small and well-annotated Clariom S gene microarray was performed in CAF-173 cells cultured in 3D spheroids and treated with OSM or vehicle (PBS).
Project description:The cytokine Oncostatin M (OSM) promotes cancer progression by acting as central node for multicellular interactions between cancer cells and surrounding stromal cells. OSM is mainly secreted by myeloid cells and the oncostatin M receptor (OSMR) is expressed by cancer cells and cancer associated fibroblasts (CAFs), among others. To understand the effect of OSM in triple negative breast cancer cells, a small and well-annotated Clariom S gene microarray was performed in OSM-overexpressing (MDA-MB-231-hOSM) and control (MDA-MB-231-hC) MDA-MB-231 cells.
Project description:To evaluate gene expression profiles in intestinal epithelial cells (IEC) after OSM stimulation, we have employed whole genome microarray expression profiling as a discovery platform to identify relevant genes which are potentially of interest to reveal the role of OSM in intestinal inflammation. The most strongly up-regulated genes were SERPINS, which belong to the family of serin peptidase inhibitors with antiprotease activities, most of them serine and cysteine proteases. SERPINB4, SERPINB3 and SERPINA3 were the genes with the strongest up-regulation, also verified in qPCR. OSM-induced SERPIN up-regulation may contribute to anti-apoptotic and proliferative effects of OSM in IEC. HCT116 cells were starved overnight with medium containing 1% FCS after reaching 70% confluency. On the next day, cells were stimulated in quadruplicates with 100 ng/mL OSM or left unstimulated. RNA was isolated 6 hours after stimulation and RNA concentration and purity was measured.
Project description:Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer in caucasian population and it's important to find new therapeutic targets. Cytokines expressed in tumor microenvironment can have strong effects on tumor cell phenotype. We have characterized the effect of Oncostatin M (OSM), a cytokine belonging to the IL-6 familly on the transcriptome of transformed keratinocytes cell line, PDVC57 cells. In this dataset, we have included the expression data obtained from transformed keratinocytes PDVC57 cells stimulated or not with OSM for 6 or 24 hours. These data have shown that 32 genes were differentially expressed in response to OSM stimulation.
Project description:Oncostatin M (OSM) and Leukemia Inhibitory Factor (LIF) signal within cells via the gp130 (Il6st) coreceptor bound either to the LIF receptor (LIFR) or the oncostatin M receptor (OSMR), but whether murine OSM can act through both receptors is controversial. Both LIF and OSM stimulate bone formation, inhibit adipocyte differentiation, and promote osteoclast differentiation, but our earlier work suggested this may depend on the receptor subtype used. This project aimed to identify those gene targets regulated by murine OSM via OSMR and LIFR by using wild type and OSMR null primary osteoblasts. Cells were differentiated to their most mature state (i.e. osteocytes) because the only prior target gene known to be regulated by murine OSM via the LIFR was an osteocyte-specific gene, sclerostin.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:The JAK2 mutation V617F is detectable in a majority of patients with Ph-negative myeloproliferative neoplasms (MPN). Enforced expression of JAK2 V617F in mice induces myeloproliferation and bone marrow (BM) fibrosis suggesting a causal role for the JAK2 mutant in the pathogenesis of MPN. However, little is known about mechanisms and effector molecules contributing to JAK2 V617F-induced myeloproliferation and fibrosis. Here we show that JAK2 V617F promotes expression of oncostatin M (OSM) in neoplastic myeloid cells. Correspondingly, OSM was found to be overexpressed in the BM and elevated in the serum of patients with JAK2 V617F+ MPN. In addition, OSM secreted by JAK2 V617F+ cells stimulated growth of fibroblasts and microvascular endothelial cells and induced the production of angiogenic and profibrogenic cytokines (HGF, VEGF, and SDF-1) in BM fibroblasts. All effects of MPN cell-derived OSM were blocked by a neutralizing anti-OSM antibody, whereas the production of OSM in MPN cells was effectively suppressed by a pharmacologic JAK2 inhibitor or RNAi-mediated knockdown of JAK2. In summary, JAK2 V617F-mediated upregulation of OSM may contribute to fibrosis, neoangiogenesis, and the cytokine storm observed in JAK2 V617F+ MPN, suggesting that OSM could serve as a novel therapeutic target molecule in these neoplasms. IMR90 cells were treated with a single dose of rh Oncostatin M (10ng/ml).
Project description:Oncostatin m (OSM) induces potent growth inhibitory and morphogenic responses in several different tumour cell types but the genetic events are not well understood. OSM can signal through two separate heterodimeric receptor complexes, gp130/LIFRα and gp130/OSMRβ. In this investigation we utilised cytokines, oncostatin M, interleukin-6 (IL-6) and leukaemia inhibitory factor (LIF) and LIF receptor antagonist, LIF-05, to help identify patterns of gene expression elicited by the different IL-6 receptor complexes in breast tumour cell line, T47D . We have tried to identify an OSM gene signature common to multiple breast tumour-derived cell lines (T47D, MCF-7 and MDA-MB-231) and identified OSM-gene regulation at time-points which coincide with the onset of OSM-induced biological effects. These findings identify a core transcriptional mechanism specific to the OSMRβ in breast tumour cells. Keywords: Comparative, timecourse, cell line-specific