Project description:Molecular mechanisms associated with pathophysiological variations in adipose tissue (AT) are not fully recognized. The main aim of this study was to identify novel candidate genes and miRNAs that may contribute to the pathophysiology of hyperplastic AT. Therefore, wide gene and microRNA (miRNA) expression patterns were assessed in subcutaneous AT of 16 morbidly obese women before and after surgery-induced weight loss. Validation of microarray data was performed by quantitative real-time PCR both longitudinally (n=25 paired samples) and cross-sectionally (25 obese vs. 26 age-matched lean women). Analyses in macrophages and differentiated human adipocytes were also performed to try to comprehend the associations found in AT. 5,018 different probe sets identified significant variations in gene expression after treatment (adjusted p-value<0.05). A set of 16 miRNAs also showed significant modifications. Functional analysis revealed changes in genes and miRNAs associated with cell cycle, development and proliferation, lipid metabolism, and the inflammatory response. Canonical affected pathways included TREM1, PI3K, and EIF2 signaling, hepatic stellate cell activation, and mitochondrial function. Increased expression of SLC27A2, ELOVL6, FASN, GYS2, LGALS12, PKP2, ACLY, and miR-575, as well as decreased FOS, EGFL6, PRG4, AQP9, DUSP1, RGS1, EGR1, SPP1, LYZ, miR-130b, miR-221, and miR-155, were further validated. The clustering of similar expression patterns for gene products with related functions revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes after the surgery-induced weight loss.
Project description:Molecular mechanisms associated with pathophysiological variations in adipose tissue (AT) are not fully recognized. The main aim of this study was to identify novel candidate genes and miRNAs that may contribute to the pathophysiology of hyperplastic AT. Therefore, wide gene and microRNA (miRNA) expression patterns were assessed in subcutaneous AT of 16 morbidly obese women before and after surgery-induced weight loss. Validation of microarray data was performed by quantitative real-time PCR both longitudinally (n=25 paired samples) and cross-sectionally (25 obese vs. 26 age-matched lean women). Analyses in macrophages and differentiated human adipocytes were also performed to try to comprehend the associations found in AT. 5,018 different probe sets identified significant variations in gene expression after treatment (adjusted p-value<0.05). A set of 16 miRNAs also showed significant modifications. Functional analysis revealed changes in genes and miRNAs associated with cell cycle, development and proliferation, lipid metabolism, and the inflammatory response. Canonical affected pathways included TREM1, PI3K, and EIF2 signaling, hepatic stellate cell activation, and mitochondrial function. Increased expression of SLC27A2, ELOVL6, FASN, GYS2, LGALS12, PKP2, ACLY, and miR-575, as well as decreased FOS, EGFL6, PRG4, AQP9, DUSP1, RGS1, EGR1, SPP1, LYZ, miR-130b, miR-221, and miR-155, were further validated. The clustering of similar expression patterns for gene products with related functions revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes after the surgery-induced weight loss.
Project description:The main aim of this experiment was to investigate gene expression on human subcutaneous adipose tissue following bariatric surgery. Our questions consisted in understanding how gene expression was linked to clinical parameters of obese patients and whether this drastic weight loss was discriminated this data.
Project description:Background. Differential gene expression in adipose tissue during diet-induced weight loss followed by a weight stability period is not well characterized. Markers of these processes may provide a deeper understanding of the underlying mechanisms. Objective. To identify differentially expressed genes in human adipose tissue during weight loss and weight maintenance after weight loss. Design. RNA from subcutaneous abdominal adipose tissue from nine obese subjects was obtained and analyzed at baseline, after weight reduction on a low calorie diet (LCD), and after a period of group therapy in order to maintain weight stability. Results. Subjects lost 18.8 + 5.4% of their body weight during the LCD and maintained this weight during group therapy. Insulin sensitivity (HOMA) improved after weight loss with no further improvement during weight maintenance. Cyclin-dependent kinase inhibitor 2B (CDKN2B) and JAZF zinc finger 1 (JAZF1), associated with type 2 diabetes, were downregulated. We could also confirm the downregulation of candidates for obesity and related traits, such as tenomodulin (TNMD) and matrix metallopeptidase 9 (MMP9), with weight loss. The expression of other candidates, such as cell death-inducing DFFA-like effector A (CIDEA) and stearoyl-CoA desaturase (SCD) were upregulated during weight loss but returned to baseline levels during weight maintenance. Conclusion. Genes in the adipose tissue are differentially expressed during weight loss and weight maintenance after weight loss. Genes that show sustained regulation may be of potential interest as markers of the beneficial effects of weight loss whereas others seem to be primarily involved in the process of weight loss itself. Nine participants were prescribed a low calorie diet (LCD) containing 1200 kcal/day for approximately three months (101 ± 26 days). Following the weight reduction phase the participants attended a six month follow-up period (167 ± 37 days). By protocol design, subjects were eligible to enter the study if they had lost at least 10% of their initial body weight during the LCD-period and maintained this weight (+5%) after group therapy. Subcutaneous adipose tissue samples were obtained at three time-points: (i) at baseline, (ii) after weight reduction when subjects were no longer losing weight, and (iii) after the group therapy weight maintenance phase.
Project description:Background. Differential gene expression in adipose tissue during diet-induced weight loss followed by a weight stability period is not well characterized. Markers of these processes may provide a deeper understanding of the underlying mechanisms. Objective. To identify differentially expressed genes in human adipose tissue during weight loss and weight maintenance after weight loss. Design. RNA from subcutaneous abdominal adipose tissue from nine obese subjects was obtained and analyzed at baseline, after weight reduction on a low calorie diet (LCD), and after a period of group therapy in order to maintain weight stability. Results. Subjects lost 18.8 + 5.4% of their body weight during the LCD and maintained this weight during group therapy. Insulin sensitivity (HOMA) improved after weight loss with no further improvement during weight maintenance. Cyclin-dependent kinase inhibitor 2B (CDKN2B) and JAZF zinc finger 1 (JAZF1), associated with type 2 diabetes, were downregulated. We could also confirm the downregulation of candidates for obesity and related traits, such as tenomodulin (TNMD) and matrix metallopeptidase 9 (MMP9), with weight loss. The expression of other candidates, such as cell death-inducing DFFA-like effector A (CIDEA) and stearoyl-CoA desaturase (SCD) were upregulated during weight loss but returned to baseline levels during weight maintenance. Conclusion. Genes in the adipose tissue are differentially expressed during weight loss and weight maintenance after weight loss. Genes that show sustained regulation may be of potential interest as markers of the beneficial effects of weight loss whereas others seem to be primarily involved in the process of weight loss itself.
Project description:Most individuals do not maintain weight loss, and weight regain increases cardio-metabolic risk beyond that of obesity. Adipose inflammation directly contributes to insulin resistance; however, immune-related changes that occur with weight loss and weight regain are not well understood. Single cell RNA-sequencing was completed with CITE-sequencing and biological replicates to profile changes in murine immune subpopulations following obesity, weight loss, and weight cycling. Weight loss normalized glucose tolerance, however, type 2 immune cells did not repopulate adipose following weight loss. Many inflammatory populations persisted with weight loss and increased further following weight regain. Obesity drove T cell exhaustion and broad increases in antigen presentation, lipid handing, and inflammation that persisted with weight loss and weight cycling. This work provides critical groundwork for understanding the immunological causes of weight cycling-accelerated metabolic disease.
Project description:Transcriptional profiling of subcutaneous adipose tissue before and after 2 years of bariatric surgery. This type of surgery produce a masive weight loss in morbidly obese subjects, and improve the comorbidities associated to obesity. Goal was to determine the effects of bariatric surgery on the gene expression of subcutaneous adipose tissue.
Project description:Bariatric surgery mediated weight loss has been shown to significantly reduce breast cancer incidence in women. We hypothesize that loss of excessive adiposity, reduces net Estrogen Receptor Alpha activation which in turn lowers breast cancer risk. A differential gene expression analysis and subsequent pathway enrichment analysis would reveal the relevant molecular mechanism behind the preventive effect of weight loss. We will correlate our RNASeq data findings with serum and breast tissue concentration of hormones as well as expression of proteins regulating hormone synthesis in breast. For this study, we recruited 30 patients who were prescribed baritaric surgery and met our selection criteria (no familial or personal history of breast cancer and free of other confounding conditions). Breast tissue and blood was collected at the day of surgery and at follow up after the patient lost 25% excess body weight. The breast core biopsy was preserved in RNALater till rna isolation and library preparation.
Project description:We investigated the regulation of adipose tissue (AT) gene expression during different phases of a dietary weight loss program and its relationship with insulin sensitivity. Obese women followed a weight reduction program composed of an energy restriction phase (ER) with a 4-week very-low-calorie diet and a weight stabilization period (WS) composed of a 2-month low-calorie diet followed by 3 to 4 months of a weight maintenance diet. At each time point, body composition, plasma parameters and glucose disposal rate were assessed and subcutaneous AT biopsies were performed. Variations in mRNA levels were determined using DNA microarrays and reverse transcription-quantitative PCR. Distinct sets of AT genes are regulated during calorie restriction and weight stabilization revealing an unexpected temporal pattern in the link between AT and insulin sensitivity during weight loss.