Project description:Esophageal cancer is one of the most aggressive cancers and the sixth leading cause of cancer death worldwide. Approximately 70% of the global esophageal cancers occur in China and over 90% histopathological forms of this disease are esophageal squamous cell carcinoma (ESCC). Currently, there are limited clinical approaches for early diagnosis and treatment for ESCC, resulting in a 10% 5-year survival rate for the patients. Meanwhile, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we show a comprehensive genomic analysis in 158 ESCC cases, as part of the International Cancer Genome Consortium (ICGC) Research Projects (http://icgc.org/icgc/cgp/72/371/1001734). We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases and additional 70 ESCC cases were subjected to array comparative genomic hybridization (a-CGH) analysis. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases and additional 70 ESCC cases were subjected to array comparative genomic hybridization (a-CGH) analysis.
Project description:Esophageal cancer is one of the most aggressive cancers and the sixth leading cause of cancer death worldwide. Approximately 70% of the global esophageal cancers occur in China and over 90% histopathological forms of this disease are esophageal squamous cell carcinoma (ESCC). Currently, there are limited clinical approaches for early diagnosis and treatment for ESCC, resulting in a 10% 5-year survival rate for the patients. Meanwhile, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we show a comprehensive genomic analysis in 158 ESCC cases, as part of the International Cancer Genome Consortium (ICGC) Research Projects (http://icgc.org/icgc/cgp/72/371/1001734). We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases and additional 70 ESCC cases were subjected to array comparative genomic hybridization (a-CGH) analysis. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases and additional 70 ESCC cases were subjected to array comparative genomic hybridization (a-CGH) analysis.
Project description:Esophageal cancer is one of the most aggressive cancers and the sixth leading cause of cancer death worldwide. Approximately 70% of the global esophageal cancers occur in China and over 90% histopathological forms of this disease are esophageal squamous cell carcinoma (ESCC). Currently, there are limited clinical approaches for early diagnosis and treatment for ESCC, resulting in a 10% 5-year survival rate for the patients. Meanwhile, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we show a comprehensive genomic analysis in 158 ESCC cases, as part of the International Cancer Genome Consortium (ICGC) Research Projects (http://icgc.org/icgc/cgp/72/371/1001734). We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases and additional 70 ESCC cases were subjected to array comparative genomic hybridization (a-CGH) analysis. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases and additional 70 ESCC cases were subjected to array comparative genomic hybridization (a-CGH) analysis.
Project description:Investigation of whole genome gene expression level changes in Homo sapiens Esophageal squamous cell carcinoma cells KYSE30 after knock down of MTA2 gene expression
Project description:Cancer is a disease of the genome. Many genomic abnormalities have been found in a variety of cancer types, which are believed to be attributable to tumorigenesis as well as resistance to treatment and recurrence. Genomic heterogeneity in the same type of cancer or within a tumor reveals the complexity of cancer biology so that intratumor heterogeneity has become an inherent feature of cancer. In this study, we use whole-exome sequencing and array comparative genomic hybridization technology to examine the mutational profiling and copy number changes from multi-region samples within an esophageal cancer in order to understand the genomic phylogeny in the evolution of intratumor heterogeneity in esophageal cancer.
Project description:Esophageal cancer is one of the most aggressive cancers and the sixth leading cause of cancer death worldwide. Approximately 70% of the global esophageal cancers occur in China and over 90% histopathological forms of this disease are esophageal squamous cell carcinoma (ESCC). Currently, there are limited clinical approaches for early diagnosis and treatment for ESCC, resulting in a 10% 5-year survival rate for the patients. Meanwhile, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we show a comprehensive genomic analysis in 158 ESCC cases, as part of the International Cancer Genome Consortium (ICGC) Research Projects (http://icgc.org/icgc/cgp/72/371/1001734). We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases and additional 70 ESCC cases were subjected to array comparative genomic hybridization (a-CGH) analysis.